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ABSTRACT

1Observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona

and the Smithsonian Institution.
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We report the final results of an Adaptive Optics (AO) imaging survey of 54 nearby,

sunlike stars for extrasolar planets, carried out in the L′ and M bands using the Clio

camera on the MMT. This survey concentrates more strongly than all others to date

on very nearby F, G, and K stars, in that proximity is prioritized higher than youth.

It is also the first survey to include extensive observations in the M band, which sup-

plemented the primary L′ observations. These longer wavelengths are most useful for

very nearby systems in which low temperature planets with red IR colors (i.e. H − L′,

H − M) could be detected. A previously unknown ∼ 0.15M⊙ stellar companion to

the F9 star GJ 3876 was discovered at a projected separation of about 80 AU, but no

planets were found. Extensive Monte Carlo simulations allow us to interpret this null

result into constraints on the distribution of extrasolar planets. If the distribution of

planets is a power law with dN ∝ MαaβdMda, normalized to be consistent with radial

velocity statistics, we find that α = −1.1 and β = −0.44, truncated at 100 AU, is ruled

out at the 90% confidence level. With 90% confidence no more than 8.1% of stars like

those in our survey have systems with three widely spaced, massive planets like the

A-star HR 8799. While surveys targeting younger stars at shorter wavelengths have set

tighter limits, our observations confirm that a paucity of giant planets at wide separa-

tions around sun-like stars is also seen in mature systems, and is robustly observed with

AO surveys at a range of wavelengths.

Subject headings: planetary systems, techniques: IR imaging, intrumentation: adaptive

optics, astrometry, binary stars

1. Introduction

Well over 200 extrasolar planets have now been discovered using the radial velocity (RV)

method. The limited temporal baseline of radial velocity observations, and the need to observe for

a complete orbital period to confirm the properties of a planet with confidence, currently limit RV

planets to periods of about 10 years or less. The masses of discovered planets range from just a

few Earth masses (Bouchy et al. 2009) up to around 20 Jupiter masses (MJ). We note that a 20

MJ object would be considered by many to be a brown dwarf rather than a planet, but that there

is no broad consensus on how to define the upper mass limit for planets. For a good overview of

RV planets to date, see Butler et al. (2006) or http://exoplanet.eu/catalog-RV.php.

The large number of RV planets makes it possible to examine the statistics of extrasolar planet

populations. Several groups have fit approximate power law distributions in mass and semimajor

axis to the set of known extrasolar planets. Necessarily, however, these power laws are not subject to

observational constraints at orbital periods longer than 10 years – and it is at these orbital periods

that we find giant planets in our own solar system. We cannot obtain a good understanding of

planets in general without information on long period extrasolar planets. Nor can we see how our
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own solar system fits into the big picture of planet formation in the galaxy without a good census

of planets in Jupiter- and Saturn-like orbits around other stars.

Repeatable detections of extrasolar planets (as opposed to one-time microlensing detections)

have so far been made by transit detection, by RV variations, by astrometric wobble, or by direct

imaging. Of these methods, transits are efficient only for detecting close-in planets. The RV method

is currently limited (by the amount of time high-precision spectrographs have been operating) to

planets with periods of about 10 years or less, but even as temporal baselines increase, long period

planets will remain harder to detect due to their slow orbital velocities. The amplitude of a

star’s astrometric wobble increases with the radius of its planet’s orbit, but decades-long observing

programs are still needed to find long-period planets. Direct imaging is the only method that allows

us to characterize long-period extrasolar planets immediately.

Direct imaging of extrasolar planets is technologically possible at present only in the infrared,

based on the planets’ own thermal luminosity, not on reflected starlight. The enabling technology

is adaptive optics (AO), which allows 6-10m ground-based telescopes to obtain diffraction lim-

ited IR images several times sharper than those from HST, despite Earth’s turbulent atmosphere.

Theoretical models of giant planets indicate that such telescopes should be capable of detecting

self-luminous giant planets in large orbits around young, nearby stars. The stars should be young

because the glow of giant planets comes from gravitational potential energy converted to heat in

their formation and subsequent contraction: lacking any internal fusion, they cool and become

fainter as they age.

Several groups have published the results of AO imaging surveys for extrasolar planets around

F, G, K, or M stars in the last five years (see for example Masciadri et al. (2005); Kasper et al.

(2007); Biller et al. (2007); Lafrenière et al. (2007). Of these, most have used wavelengths in the

1.5-2.2 µm range, corresponding to the astronomical H and KS filters (Masciadri et al. 2005; Biller

et al. 2007; Lafrenière et al. 2007). They have targeted mainly very young stars. Because young

stars are rare, the median distance to stars in each of these surveys has been more than 20 pc.

In contrast to those above, our survey concentrates on very nearby F, G, and K stars, with

proximity prioritized more than youth in the sample selection. The median distance to our survey

targets is only 11.2 pc. Ours is also the first survey to include extensive observations in the M

band, and only the second to search solar-type stars in the L′ band (the first was Kasper et al.

(2007)). The distinctive focus on older, very nearby stars for a survey using longer wavelengths is

natural: longer wavelengths are optimal for lower temperature planets which are most likely to be

found in older systems, but which would be undetectable around all but the nearest stars.

Our survey places constraints on a more mature population of planets than those that have

focused on very yong stars, and confirms that a paucity of giant planets at large separations from

sun-like stars is robustly observed at a wide range of wavelengths.

In Section 2 we describe the criteria used in choosing our sample, and present the characteristics

of our stars. In Section 3, we briefly describe our instrument, out observing strategy, and our image
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processing pipeline. In Section 4 we detail our sensitivity estimation methods, and show how we

characterized them using blind tests in which simulated planets were inserted into our raw data – a

practice that should be standard for planet imaging surveys. In Section 5 we give astrometric and

photometric data for all faint companions detected in our survey (note that astrometric information

on bright binary stars in our sample is also provided in Table 14).

In Section 6, we review power law fits to the distribution of known RV planets, including the

normalization of the power laws. In Section 7, we present the constraints our survey places on the

distribution of extrasolar giant planets, based on extensive Monte Carlo simulations. In Section 8

we discuss the promising future of planet-search observations in the L′ and especially the M band,

and in Section 9 we conclude.

2. The Survey Sample

The goal of our sample selection was to pick the nearest stars around which we could detect

planets of 10 Jupiter Masses (MJ) or below. This practically meant that very nearby stars were

potential targets up to ages of several Gyr, while at larger distances we would consider only fairly

young stars. We set out initially to investigate only FGK stars within 25pc of the sun, in order

to make our sample comparable in spectral type to the samples of the RV surveys and to focus on

the nearest stars, at which the L′ and M bands are most useful relative to shorter wavelengths. In

the end we included a few M stars and a few stars slightly beyond 25pc, because these stars were

very interesting and we had exhausted most of the observable stars that lay within our more strict

criteria. The stars of our sample are presented in Table 2.

Our survey focuses on markedly more nearby stars than all other surveys published to date.

For example, the median distance to stars in the Masciadri et al. (2005) survey is 21.2 pc. For the

Kasper et al. (2007) survey the median distance is 37 pc, for Biller et al. (2007) it is 24.7 pc, and

for Lafrenière et al. (2007) it is 21.7 pc. Our median distance is 11.2 pc.
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Table 1. Age, Distance, and Spectral Type of Survey Targets

Age 1 Age 2 Adopted Dist. Spectral

Star (Gyr) (Gyr) Age (Gyr) (pc) Type

GJ 5 0.11a 0.2b 0.155 14.25 K0Ve

HD 1405 0.1-0.2c 0.03-0.08d 0.1 30 K2V

τ Ceti · · · · · · 5 3.50 G8Vp

GJ 117 0.1c 0.03a 0.1 8.31 K2V

ǫ Eri 0.56a · · · 0.56 3.27 K2V

GJ 159 0.03-0.01e · · · 0.1 18.12 F6V

GJ 166 B · · · · · · 2 4.83 DA

GJ 166 C · · · · · · 2 4.83 dM4.5e

HD 29391 0.01-0.03f · · · 0.1 14.71 F0V

GJ 211 0.52a · · · 0.52 12.09 K1Ve

GJ 216 A 0.4-0.6g · · · 0.44 8.01 F6V

BD+20 1790 0.06-0.3e · · · 0.18 24 K3

GJ 278 C 0.1-0.3h · · · 0.2 14.64 M0.5Ve

GJ 282 A 0.49a 0.4-0.6g 0.5 13.46 K2Ve

GJ 311 0.1c 0.1-0.3e 0.24 13.85 G1V

HD 77407 A 0.05i · · · 0.1 30.08 G0V

HD 77407 B 0.05i · · · 0.1 30.08 M2V

HD 78141 0.1-0.2c · · · 0.15 21.4 K0

GJ 349 0.37a · · · 0.37 11.29 K3Ve

GJ 355 0.1c 0.05-0.15j 0.1 19.23 K0

GJ 354.1 A 0.1c 0.02-0.15j 0.1 18.87 dG9

GJ 380 · · · · · · 2 4.69 K2Ve

GJ 410 0.2-0.6g · · · 0.37 11 dM2e

HD 96064 A 0.1-0.2c · · · 0.15 24.63 G5V

HD 96064 B 0.1-0.2c · · · 0.15 24.63 M3V

GJ 450 <1.0k · · · 1 8.1 M1Ve

BD+60 1417 0.1-0.2c · · · 0.15 17.7 K0

HD 113449 0.1-0.2c · · · 0.15 22.1 G5V

GJ 505 A 0.79a · · · 0.79 11.9 K2V

GJ 505 B 0.79a · · · 0.79 11.9 M0.5V

GJ 519 0.2-0.6g · · · 0.37 9.81 dM1

GJ 3860 0.28a 0.2-0.6g 0.28 14.93 K0
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Table 1—Continued

Age 1 Age 2 Adopted Dist. Spectral

Star (Gyr) (Gyr) Age (Gyr) (pc) Type

GJ 564 0.1-0.2c · · · 0.15 17.94 G2V

GJ 3876 · · · · · · 2 43.3 F9IV

ξ Boo A 0.43a 0.1c 0.29 6.71 G8V

ξ Boo B 0.15a · · · 0.29 6.71 K4V

HD 139813 0.1-0.2c · · · 0.15 21.7 G5

GJ 625 0.4-0.6g · · · 0.5 6.28 dM2

GJ 659 A <1.0l · · · 1 20.2 K8V

GJ 659 B <1.0l · · · 1 20.2 dK8

GJ 684 A 0.4-0.6g · · · 0.5 14.09 G0V

GJ 684 B 0.4-0.6g · · · 0.5 14.09 K3V

GJ 702 A · · · · · · 2 5.03 K0V

GJ 702 B · · · · · · 2 5.03 K4V

61 Cyg A · · · · · · 2 3.46 K5V

61 Cyg B · · · · · · 2 3.46 K7V

BD+48 3686 0.1-0.2c · · · 0.15 23.6 K0

GJ 860 A <1.0k · · · 1 4.01 M2V

GJ 860 B <1.0k · · · 1 4.01 M6V

GJ 879 0.1-0.3h · · · 0.2 7.81 K5Ve

HD 220140 A 0.025-0.15j · · · 0.1 19.74 G9V

HD 220140 B 0.025-0.15j · · · 0.1 19.74 G9V

GJ 896 A <0.3h · · · 0.3 6.58 M3.5

GJ 896 B <0.3h · · · 0.3 6.58 M4.5

Note. — The adopted age, usually an average of the referenced

values, is the age we used in our Monte Carlo simulations.

aFischer (1998)

bBryden et al. (2006)

cWichmann et al. (2003)

dLópez-Santiago et al. (2006)
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eAge estimate from FEPS target list, courtesy M. Meyer.

fZuckerman et al. (2001)

gKing et al. (2003)

hBarrado y Navascués (1998)

iWichmann & Schmitt (2003)

jMontes et al. (2001)

kThe Hünsch et al. (1998) catalog reports a ROSAT detection at a flux level

that suggests an age of 1 Gyr or less.

lFavata et al. (1998)
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Surveying nearby, older stars at long wavelengths is interesting for several reasons. First,

nearby stars offer the best chance to see planets at small physical separations, perhaps even inward

to the outer limits of RV sensitivity. Second, planetary systems with ages up to several hundred Myr

may still be undergoing substantial dynamical evolution due to planet-planet interactions (Juric &

Tremaine 2007; Gomes et al. 2005). While finding systems in the process of dynamical evolution

would be fascinating, we also need information about systems old enough to have settled down

into a mature, stable configuration. To probe long-period planet populations in mature systems,

surveys such as ours that target older stars are necessary.

Additionally, theoretical spectra of older planets are likely more reliable than for younger ones,

as these planets are further from their unknown starting conditions and moving toward a well-

understood, stable configuration such as Jupiter’s. It has been suggested by Marley et al. (2007),

in fact, that theoretical planet models such as those of Burrows et al. (2003) may overpredict

the brightness of young (< 100 Myr) planets by orders of magnitude, while for older planets the

models are more accurate. Lastly, L′ surveys such as ours and that of Kasper et al. (2007) are

an important complement to the shorter-wavelength work of Masciadri et al. (2005); Biller et al.

(2007); and Lafrenière et al. (2007) in that they insure that limits on planet populations do not

depend entirely on yet-untested predictions of the flux from extrasolar giant planets in a narrow

wavelength interval. Until a sufficient number of extrasolar planets have been directly imaged

that their spectra are well understood, surveys conducted at a range of different wavelengths will

increase the confidence that may be placed in the results.
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Table 2. Position and Magnitude of Survey Targets

Star RA DEC V H K L’

GJ 5 00:06:36.80 29:01:17.40 6.13 4.69 4.31 4.25

HD 1405 00:18:20.90 30:57:22.00 8.60 6.51 6.39 6.32

τ Ceti 01:44:04.10 -15:56:14.90 3.50 1.77 1.70 1.65

GJ 117 02:52:32.10 -12:46:11.00 6.00 4.23 4.17 4.11

ǫ Eri 03:32:55.80 -09:27:29.70 3.73 1.88 1.78 1.72

GJ 159 04:02:36.70 -00:16:08.10 5.38 4.34 4.18 4.14

GJ 166 B 04:15:21.50 -07:39:22.30 9.50 · · · · · · · · ·
GJ 166 C 04:15:21.50 -07:39:22.30 11.17 5.75 5.45 5.05

HD 29391 04:37:36.10 -02:28:24.80 5.22 4.77 4.54 4.51

GJ 211 05:41:20.30 53:28:51.80 6.23 3.99 4.27 4.21

GJ 216 A 05:44:27.80 -22:26:54.20 3.60 2.47 2.42 2.38

BD+20 1790 07:23:43.60 20:24:58.70 9.93 7.61 7.51 7.42

GJ 278 C 07:34:37.40 31:52:09.80 9.07 5.42 5.24 5.05

GJ 282 A 07:39:59.30 -03:35:51.00 7.20 5.06 4.89 4.82

GJ 311 08:39:11.70 65:01:15.30 5.65 4.28 4.17 4.12

HD 77407 A 09:03:27.10 37:50:27.50 7.10 5.53 5.44 5.39

HD 77407 B 09:03:27.10 37:50:27.50 · · · · · · · · · · · ·
HD 78141 09:07:18.10 22:52:21.60 7.99 5.92 5.78 5.72

GJ 349 09:29:54.80 05:39:18.50 7.22 5.00 4.79 4.70

GJ 355 09:32:25.60 -11:11:04.70 7.80 5.60 5.45 5.39

GJ 354.1 A 09:32:43.80 26:59:18.70 7.01 5.24 5.12 5.06

GJ 380 10:11:22.10 49:27:15.30 6.61 3.93 2.96 2.89

GJ 410 11:02:38.30 21:58:01.70 9.69 5.90 5.69 5.46

HD 96064 A 11:04:41.50 -04:13:15.90 7.64 5.90 5.80 5.75

HD 96064 B 11:04:41.50 -04:13:15.90 · · · · · · · · · · · ·
GJ 450 11:51:07.30 35:16:19.30 9.78 5.83 5.61 5.40

BD+60 1417 12:43:33.30 60:00:52.70 9.40 7.36 7.29 7.23

HD 113449 13:03:49.70 -05:09:42.50 7.69 5.67 5.51 5.46

GJ 505 A 13:16:51.10 17:01:01.90 6.52 4.58 4.38 4.31

GJ 505 B 13:16:51.10 17:01:01.90 9.80 5.98 5.75 5.43

GJ 519 13:37:28.80 35:43:03.90 9.07 5.66 5.49 5.28

GJ 3860 14:36:00.60 09:44:47.50 7.51 5.63 5.55 5.49

GJ 564 14:50:15.80 23:54:42.60 5.88 4.47 4.42 4.37
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As can be seen from Table 2, some estimates have placed the ages of some of our stars well

below 100 Myr. We have chosen to approximate these ages as 100 Myr. There are several reasons

for this. First, the Burrows et al. (2003) models we have adopted do not give the type of observables

we need for planets younger than 100 Myr. Second, setting the ages of these stars slightly older

than they are thought to be fits in with our generally conservative approach to the volatile subject

of extrasolar planet searches, and ensures that our survey results do not hang on just a few very

young stars and will not be invalidated if the age estimates are revised upward. Finally, setting the

ages conservatively hedges our results to some extent against the possibility suggested in Marley

et al. (2007) that young massive planets may be far fainter than expected because much of the

gravitational potential energy of the accreting material may get radiated away in an accretion

shock and thus never get deposited in the planet’s interior. Figure 4 in Marley et al. (2007) shows

that in this accretion scenario planets start out at much lower luminosities than predicted by ‘hot

start’ models such as those of Burrows et al. (2003), but over time the predictions converge. By

100 Myr, the differences are less than an order of magnitude for planets less massive than 10 MJ,

and are negligible for planets of 4 MJ and lower masses.

3. Observations and Image Processing

3.1. The Instrument

The Clio instrument we used for our observations has been well described elsewhere (Freed

et al. (2004), Sivanandam et al. (2006), and Hinz et al. (2006)). We present only a brief overview

here.

The MMT AO system delivers a lower thermal background than others because it uses the

world’s first deformable secondary mirror, thereby avoiding the multiple warm-mirror reflections

(each adding to the thermal background) that are needed in other AO systems. This unique

property makes the MMT ideal for AO observations in wavelengths such as the L′ and M bands

that are strongly affected by thermal glow. Clio was developed to take advantage of this to search

for planets in these bands. It saw first light as a simple imager offering F/20 and F/35 modes.

The design allowed for coronagrapic capability, which has since been developed (Kenworthy et al.

2007) but was not used in our survey. In the F/20 mode we used for all the observations reported

herein, Clio’s field of view is 15.5×12.4 arcseconds. Its plate scale is 0.04857 ± 0.00003 arcseconds

per pixel, which gives finer than Nyquist sampling of the diffraction-limited point spread function

(PSF) of the MMT in the L′ and M bands.
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Table 2—Continued

Star RA DEC V H K L’

GJ 3876 14:50:20.40 82:30:43.00 5.64 4.19 3.92 3.87

ξ Boo A 14:51:23.40 19:06:01.70 4.55 2.82 2.75 2.70

ξ Boo B 14:51:23.40 19:06:01.70 6.97 4.45 4.34 4.24

HD 139813 15:29:23.60 80:27:01.00 7.31 5.56 5.46 5.41

GJ 625 16:25:24.60 54:18:14.80 10.40 6.06 5.83 5.60

GJ 659 A 17:10:10.50 54:29:39.80 8.80 6.23 6.12 5.97

GJ 659 B 17:10:12.40 54:29:24.50 9.29 6.13 5.97 5.83

GJ 684 A 17:34:59.59 61:52:28.39 5.23 3.89 3.74 · · ·
GJ 684 B 17:34:59.59 61:52:28.39 8.06 · · · · · · · · ·
GJ 702 A 18:05:27.30 02:30:00.40 4.20 2.32 2.24 2.18

GJ 702 B 18:05:27.30 02:30:00.40 6.00 3.48 3.37 3.27

61 Cyg A 21:06:53.90 38:44:57.90 5.21 2.47 2.36 2.25

61 Cyg B 21:06:55.30 38:44:31.40 6.03 3.02 2.87 2.74

BD+48 3686 22:20:07.00 49:30:11.80 8.57 6.58 6.51 6.45

GJ 860 A 22:27:59.47 57:41:45.15 9.59 5.04 4.78 · · ·
GJ 860 B 22:27:59.47 57:41:45.15 10.30 · · · · · · · · ·
GJ 879 22:56:24.10 -31:33:56.00 6.48 3.80 3.81 3.70

HD 220140 A 23:19:26.60 79:00:12.70 7.54 5.74 5.66 5.60

HD 220140 B 23:19:26.60 79:00:12.70 · · · · · · · · · · · ·
GJ 896 A 23:31:52.20 19:56:14.10 9.95 5.24 4.99 4.64

GJ 896 B 23:31:52.20 19:56:14.10 12.40 6.98 6.68 6.28

Note. — Coordinates are epoch J2000.0 and are mostly from Perry-

man et al. (1997). H and K magnitudes are from Cutri et al. (2003),

or else calculated from Simbad website spectral types and V magnitudes

using Table 7.6 of Cox (2000). L′ magnitudes are similarly calculated

from either V or K values.
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3.2. Observations

For each star in our sample we sought to acquire about one hour or more of cumulative

integration at the L′ band. In most cases we achieved this. For some of our brightest nearby

targets we acquired M band integrations as well. If possible we observed the star through transit,

not only to minimize airmass, but also to obtain the greatest possible amount of parallactic rotation.

Parallactic rotation is important because it causes image artifacts from the telescope to rotate with

respect to real sources, rendering them more distinguishable. To enhance this effect, we observed

with the instrument rotator off, so that rays and ghosts from the Clio instrument itself would

also rotate, and could be supressed by the same procedures that supressed telescope artifacts (see

Section 3.3).

After acquiring each target with MMTAO, we determined a long ‘science’ exposure time based

solely on the sky background, chosen so that the sky background flux filled 60−80% of the detector

full-well capacity. This ensured that beyond the speckle halo of the star the observations were

background-limited rather than readnoise limited. Optimal exposures changed with to night-to-

night variations in sky brightness; see Table 3. In normal operation Clio coadds several individual

frames and saves them as a single FITS image. We used this option except for our observations

of the star GJ 380, for which we saved and processed the frames individually. The increased data

volume and processing runtimes for GJ 380 outweighed any minor advantages the single-frame

approach may offer in terms of image quality. Coadding delivers good-quality data much more

efficiently.

Table 3 shows the date on which each of our target stars was observed, the nominal single-

frame integration time, the coadds, and the number of coadded FITS images we acquired. The true

single-frame integration for Clio is the nominal integration plus about 59.6 msec. Table 4 gives the

full science integration, parallactic rotation, and mean airmass for each star. Stellar images in our

science exposures were saturated, so whenever possible we took a few shorter exposures to measure

the point spread function (PSF) for each data set.

We took our data using the standard IR imaging technique of nodding, in which a sequence of

images is taken in one position, the telescopes is moved (‘nodded’) slightly, and then another image

sequence is acquired. Images taken at one position can then be subtracted from images taken at

the other position. Any real celestial objects leave both bright and dark images, but artifacts of

the bright sky interacting with the telescope and the detector vanish. This is a powerful technique

and is practically indispensible for L′ and M band observations. We typically nodded the telescope

every 2-5 minutes. This was short enough that alterations in the sky background did not introduce

appreciable noise into our data – in sharp contrast to, e.g., 10 µm N band observations, where a

‘chopping’ mirror must be used to switch between source and sky on a timescale of seconds or less.
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Table 3. Observations of Science Targets: Basic Parameters

Date Obs.

Star dd/mm/yy) Band Clio int(msec) Coadds # Images

GJ 659A 11/04/06 L’ 2000 10 90

GJ 354.1A 12/04/06 L’ 2000 10 232

GJ 450 12/04/06 L’ 2000 10 260

GJ 625 12/04/06 L’ 2000 10 208

GJ 349 13/04/06 L’ 2000 10 240

GJ 564 13/04/06 L’ 2000 10 193

GJ 3876 13/04/06 L’ 2000 25 68

GJ 3860 09/06/06 L’ 1500 15 170

HD 139813 09/06/06 L’ 1200 20 148

GJ 702 ABa 09/06/06 L’ 1200 20 95

61 Cyg A 09/06/06 L’ 1200 20 133

BD+60 1417 10/06/06 L’ 1200 20 160

ξ Boo ABa 10/06/06 L’ 1200 20 157

61 Cyg B 10/06/06 L’ 1500 15 140

GJ 519 10/06/06 L’ 1500 15 180

BD+48 3686 11/06/06 L’ 1200 20 130

ξ Boo ABa 11/06/06 M 100 100 260

GJ 684 ABa 11/06/06 L’ 1200 20 120

GJ 505 ABa 12/06/06 L’ 1200 20 149

GJ 659 B 12/06/06 L’ 1200 20 170

61 Cyg A 12/06/06 M 100 100 176

GJ 860 ABa 12/06/06 L’ 1200 20 104

61 Cyg B 12/07/06 M 100 100 274

GJ 896 ABa 13/07/06 L’ 1500 20 105

ǫ Eri 09/09/06 M 130 100 180

GJ 5 11/09/06 L’ 1500 15 210

ǫ Eri 11/09/06 L’ 1500 15 184

GJ 117 01/12/06 L’ 1500 15 139

GJ 211 01/12/06 L’ 1500 15 170

GJ 282 A 01/12/06 L’ 1500 15 190

HD 1405 02/12/06 L’ 1500 15 98

GJ 159 02/12/06 L’ 1500 15 180
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Table 3—Continued

Date Obs.

Star dd/mm/yy) Band Clio int(msec) Coadds # Images

GJ 216 A 02/12/06 L’ 1500 15 158

GJ 278 C 02/12/06 L’ 1500 15 132

GJ 355 02/12/06 L’ 1500 15 159

GJ 879 03/12/06 L’ 1500 15 54

HD 220140 ABa 03/12/06 L’ 1500 15 170

GJ 166 BCa 03/12/06 L’ 1500 15 149

GJ 311 03/12/06 L’ 1500 15 90

GJ 410 03/12/06 L’ 1500 15 100

τ Ceti 04/01/07 L’ 1700 15 160

HD 29391 04/01/07 L’ 1700 15 200

BD+20 1790 04/01/07 L’ 1700 15 188

HD 96064 ABa 04/01/07 L’ 1700 15 180

HD 77407 ABa 05/01/07 L’ 1700 15 79

HD 78141b 11/04/07 L’ 1700 15 203

HD 113449 11/04/07 L’ 1500 15 190

GJ 702 ABa 11/04/07 M 200 100 144

GJ 380 30/04/07 L’ 1500 1 2066

Note. — The ‘Clio int’ column gives the nominal single-frame integration

time for Clio in msec. The actual single frame integration is about 59.6 msec

longer in every case.

aThese stars were sufficiently close binaries that both stars appeared on the same Clio

images, and meaningful sensitivity to substellar objects could be obtained around both.

bA small fraction of the images of this star were accidentally taken with a 1500 msec rather

than a 1700 msec nominal integration time.
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Table 4. Observations of Science Targets: Data Acquired

Star Band Exposure(sec) Mean Airmass Rotation

GJ 659 A L’ 1853.64 1.113 15.80◦

GJ 354.1 A L’ 4778.27 1.032 130.75◦

GJ 450 L’ 5354.96 1.031 110.37◦

GJ 625 L’ 4283.97 1.117 45.65◦

GJ 349 L’ 4943.04 1.178 40.61◦

GJ 564 L’ 3975.03 1.036 70.70◦

GJ 3876 L’ 3501.32 1.601 27.23◦

GJ3860 L’ 3976.98 1.086 47.09◦

HD139813 L’ 3728.42 1.529 30.15◦

GJ 702 ABa L’ 2393.24 1.149 25.50◦

61 Cyg A L’ 3350.54 1.012 101.25◦

BD+60 1417 L’ 4030.72 1.153 37.65◦

ξ Boo ABa L’ 3955.14 1.047 71.20◦

61 Cyg B L’ 3275.16 1.012 103.68◦

GJ 519 L’ 4210.92 1.011 139.97◦

BD+48 3686 L’ 3274.96 1.074 35.97◦

ξ Boo ABa M 4149.60 1.060 46.142◦

GJ 684 ABa L’ 3023.04 1.175 24.15◦

GJ 505 ABa L’ 3753.61 1.070 45.30◦

GJ 659 B L’ 4282.64 1.112 43.93◦

61 Cyg A M 2808.96 1.025 44.24◦

GJ 860 ABa L’ 2619.97 1.133 24.55◦

61 Cyg B M 4373.04 1.018 118.96◦

GJ 896 ABa L’ 3275.16 1.026 66.49◦

ǫ Eri M 3412.80 1.334 23.406◦

GJ 5 L’ 4912.74 1.011 146.98◦

ǫ Eri L’ 4304.50 1.342 36.92◦

GJ 117 L’ 3251.77 1.463 34.05◦

GJ 211 L’ 3976.98 1.097 50.12◦

GJ 282 A L’ 4444.86 1.281 30.28◦

HD 1405b L’ 2292.61 1.036 162.97◦

GJ 159 L’ 4210.92 1.189 37.65◦

GJ 216 A L’ 3696.25 1.739 30.10◦
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3.3. Image Processing

Image processing for planet search AO images tends to be complex and sophisticated. We have

given a brief outline of our processing pipeline in Heinze et al. (2008), which is applicable to the

current work, and we hope to detail the unique aspects of our pipeline in a separate future paper.

Here we will briefly describe the processing sequence, stressing aspects that were not covered in

Heinze et al. (2008), but which become more important for the larger set of stars, processed over

a longer period of time, that we describe herein.

We begin the processing of each Clio image by normalizing it to a single coadd, subtracting

an equal-exposure dark frame usually taken immediately before or after the science data sequence,

and dividing by a flat frame. There follows an initial step of bad-pixel fixing. The next step is nod

subtraction: each image has subtracted from it an identically processed copy of an image from the

opposite nod position. This image is scaled (by a factor that is always very close to unity) so that

its mean sky brightness exactly matches that of the first image; the scaling is useful to compensate

for small variations in sky brightness. Further bad-pixel fixing and bad-column correction follows.

Finally, an algorithm to remove residual pattern noise is applied, and the image is zero-padded,

shifted, and rotated in a single bicubic spine operation so that celestial north is up and the centroid

of the primary star image is located in the exact center of the image. See Figure 1 for an example

of our processing sequence, applied to the nearby binary star GJ 896.

The rotation places celestial north up on the images with an accuracy of about 0.2 degrees.

Since we do not use the instrument rotator, a different rotation is required for each image: the

parallactic angle plus an constant offset, which we determine by observing known binary stars. We

have confirmed that the clean, symmetrical stellar images produced by the MMT AO system at the

L′ and M bands give accurate, consistent centroids even if saturated. While parallactic rotation of

bright binary stars over just tens of seconds has been detected due to the high internal precision of

Clio astrometry, in no case does sufficient parallactic rotation occur during a Clio coadd sequence

to appreciably blur the science images.

We stack our processed images to make a master image for each processing method using

a creeping mean combine. This method of image stacking uses a single parameter, the rejection

fraction, which we set to 20% for our standard master images. The mean of each given pixel

through the image stack is computed, the most deviant value is rejected, and the mean is computed

again. This procedure is iterated until the required fraction of data points have been rejected.

S. Sivanandam greatly improved the speed of our processing pipeline by demonstrating that the

creeping mean could be computed in N log(N) time, rather than the previous N2 implementation

of A. N. H. We chose the creeping mean over the more commonly used median with sigma-clipping

because the creeping mean can deliver cleaner final stacks when, as with Clio, the raw images

contain bright, slowly-rotating ghosts and diffraction rays. In clean sky away from all ghosts and

rays, the median delivers slightly lower rms noise, since it rejects fewer data points.

Our final stacked images contain dark, high-noise regions on either side of each bright star, due
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Table 4—Continued

Star Band Exposure(sec) Mean Airmass Rotation

GJ 278 Cb L’ 3088.01 1.017 170.627◦

GJ 355 L’ 3719.65 1.380 25.74◦

GJ 879 L’ 1263.28 2.232 11.68◦

HD 220140 ABa L’ 3976.98 1.494 14.14◦

GJ 166 BCa L’ 3485.71 1.301 28.66◦

GJ 311 L’ 2105.46 1.201 26.23◦

GJ 410 L’ 2339.40 1.026 34.26◦

τ Ceti L’ 4223.04 1.535 37.03◦

HD 29391 L’ 5278.80 1.227 39.63◦

BD+20 1790 L’ 4962.07 1.068 47.94◦

HD 96064 ABa L’ 4750.92 1.252 41.74◦

HD 77407 ABa L’ 2085.13 1.008 95.44◦

HD 78141c L’ 5297.98 1.022 109.11◦

HD 113449 L’ 4444.86 1.263 35.36◦

GJ 702 AB M 3738.24 1.171 32.70◦

GJ 380 L’ 3222.13 1.341 20.58◦

aThese stars were sufficiently close binaries that both stars appeared on the

same Clio images, and meaningful sensitivity to substellar objects could be obtained

around both.

bThough the rotation on this star is very large, difficulties arise because the star

transited very near the zenith and almost all the rotation happened in a short span

of time during which observations were not possible. PSF subtraction had to be

performed on a subset of the data with equal numbers of images on each side of

transit.

cA small fraction of the images of this star were accidentally taken with a 1500

msec rather than a 1700 msec nominal integration time. The total exposure time

has been corrected accordingly.
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Fig. 1.— (A) Raw image of the nearby binary star GJ 896. (B) Same image after dark subtraction

and flatfielding. Contrast stretched 5× relative to (A). (C) Same image after nod subtraction.

Contrast stretched 2.5× relative to (B). (D) Same image after correction for bad pixels and bad

columns. (E) Same image after shifting and rotation. (F) Final stack maded from 105 images like

(E). Unsharp masking has not yet been applied. The field of view for each tile is 10.6 asec square.
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to the negative star images from nod subtraction. Since we usually keep a constant nod direction

referenced to the telescope, for data sets with significant parallactic rotation the dark regions are

spread into arcs and weakened by the creeping mean stack. To further alleviate the dark regions

and to enhance the visibility of faint point sources against the bright stellar halo itself, we unsharp

mask the final, stacked images. We do this by convolving the image with a Gaussian kernal of

σ = 5pix, and then subtracting this convolved version from the original image. The full width at

half maximum (FWHM) of the Gaussian kernal is 11.8 pixels, as opposed to a FWHM of about 3

pixels for a typical PSF, so the unsharp masking does not strongly reduce the brightness of real

point sources. This step marks the end of our image processing pipeline.

The above describes our baseline processing method. There were five important specializations

of this method, which we called the ‘b,’ ‘d,’ ‘e,’ ‘x,’ and ‘y’ processing strategies, with the baseline

method itself called ‘a’.

In the ‘b’ processing method, we supress the stellar PSF to increase our sensitivity to faint

companions. To do this, we take advantage of the fact that long-lived PSF artifacts in stellar images

from AO-equipped telescopes tend to remain fixed with respect to the telescope and/or instrument.

When observing with the instrument-rotator off, as we do, real sources slowly rotate with respect

to artifacts as the telescope tracks. Science images must be digitally rotated before stacking, as

described above. However, if a stack of un-rotated frames is made, a clear image of the instrumental

PSF is obtained, while any real sources are strongly attenuated by the creeping mean. We subtract

a properly registered version of such a PSF image from every science frame prior to final rotation

and stacking. The result is powerful attenuation of the stellar PSF and greatly increased sensitivity

to close-in companions. Marois et al. (2006) appear to have been the first to use a procedure like

this for AO planet imaging; they describe it as angular differential imaging (ADI).

In the ‘d’ reduction method, each image is unsharp masked before the stack. The final stacked

image is unsharp masked again. This method improves every data set, and is especially powerful

for bright stars whose intense seeing halos tend to introduce noise into the final stacks. The ‘e’

data reduction method combines the ‘b’ and ‘d’ methods: ADI is applied, and then the pre-stack

unsharp masking is performed.

The ‘x’ data reduction method uses a variant on nod subtraction that avoids the dark negative

images. Two master sky images are made, by combining the star-free portions of all images in the

first and second halves of the data set. One of these star-free master sky images is then subtracted

from each individual science image in lieu of the ordinary nod subtraction. To avoid subtracting

real sources, the sky image from the second half of the data set is subtracted from images in the

first half, and vice-versa. The usefulness of this processing method varies enormously from one data

set to another. If the sky background was very stable, the dark nod-subtraction artifacts disappear

magically, and the background noise level is almost as good as for the baseline processing. If the

sky background was highly variable, the ‘x’ images are useless due to intense noise. The ‘y’ image

reduction method is a combination of the ‘x’ and ‘d’ methods, in which the images are unsharp



– 20 –

masked after the subtraction of the master sky image but before the final stack. Figure 2 compares

the results of the ‘a’ method (before and after the final unsharp masking step), the ‘d’ method,

and the ‘y’ method. The star is HD 96064, a binary system in which the secondary is itself a close

binary. A faint additional companion is also detected, but is confirmed based on KS − L′ color to

be a background star rather than a substellar companion.

Two additional processing methods could be applied to binary stars of near-equal brightness

in which both components appeared on each Clio frame. A scaled version of the PSF of each

star could be used to subtract the other, on a frame-by-frame basis, prior to the final stack. The

resulting PSF subtraction was substantially better than ADI. We labeled this reduction method

‘f.’ A version that also included pre-stack unsharp masking was called ‘g’. Figure 3 illustrates our

different PSF subtraction methods, both ADI and binary star subtraction, as applied to the binary

star GJ 896, which was also shown in Figure 1.

We applied the ‘a,’ ‘b,’ ‘d,’ and ‘e’ processing methods to almost all of our stellar data sets,

except a very few for which there was insufficient parallactic rotation to use the ADI methods

without subtracting real sources. In many instances we also applied the ‘x’ and ‘y’ methods. We

applied the ‘f’ and ‘g’ methods to every binary star where they would work.

The methods involving pre-stack unsharp masking (‘d,’ ‘e,’ ‘y,’ and ‘g’) always gave cleaner

images, but we used the other methods as well because pre-stack masking slightly dimmed point

sources (by about 3-10%, depending on the AO-corrected FWHM), and there was a slight chance

this could cause a discovery to be missed. Our pattern-noise correction method also dimmed faint

point sources by about 15-18%, based on tests. Near the end of our processing, we implemented a

superior pattern-noise correction originated by M. K. that caused zero dimming, and a new form of

unsharp masking which also produced zero dimming to within the measurement error of our tests.

Only the stars GJ 684 A, GJ 684 B, GJ 702 A (M band only), GJ 702 B (M band only), 61 Cyg

B (M band only), GJ 860 A, and GJ 860 B were processed using these improvements. For these

stars, only the ‘d,’ ‘e,’ ‘y,’ and, where applicable, the ‘g’ processing methods were used, since the

downside of pre-stack unsharp masking had been eliminated.

4. Sensitivity Analysis

4.1. Sensitivity Estimators

Our survey arrived at a null result: no planets were detected. Our science results, like those

of previous surveys (Masciadri et al. 2005; Kasper et al. 2007; Biller et al. 2007; Lafrenière et al.

2007), therefore take the form of upper limits on the abundance of extrasolar planets. The accuracy

of such an upper limit depends entirely on having a good metric for the sensitivity of the survey

observations.

A sensitivity estimator must translate some measurable statistic of an image into a realistic
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Fig. 2.— (A) Result of baseline processing (‘a’ method) before final unsharp mask. (B) The ‘a’

method image after unsharp masking. Dark nod-subtraction artifacts are somewhat reduced but

remain prominent. (C) Same data set processed with the ‘d’ method. Nod artifacts are greatly

reduced, but still exist as high-noise regions where faint sources could not be detected. (D) Same

data set processed with the ‘y’ method. The nod artifacts are eliminated. Field shown in each tile

is 17 asec square.
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Fig. 3.— (A) Baseline ‘a’ method final image of GJ 896A. (B) Same data set processed with ADI

(‘b’ method). (C) Same data set processed with ADI and pre-stack unsharp masking (‘e’ method).

(D) Same data set processed with binary star subtraction. Background noise is increased because

the secondary had to be scaled up to match the brightness of the primary. (E) Same data set, but

now showing the ‘a’ method image of the secondary, rather than the primary. (F) Same data set,

again showing the secondary, but now processed with binary star subtraction. The background is

very clean since the primary was scaled down to subtract away the secondary. Field shown in each

tile is 3.9 asec square.
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point-source detection limit. For well-sampled data such as ours, perhaps the simplest solution is

to calculate the RMS of pixel values in an assigned region and translate this to a detection limit

using simple
√

n statistics:

σPSF = σpix

√
πr2 = σpixr

√
π. (1)

Where σPSF is the PSF-scale noise in the image, σpix is the sigle-pixel rms, and r is the radius

of the image of a point source (i.e. about half the FWHM of the PSF). Since not all the flux of a

real point source will fall within the aperture of radius r, an aperture correction must be applied as

a final step. Then, for example, the 5σ point-source sensitivity will be 5 σPSF times the aperture

correction. We will call this Method 1.

The simple
√

n statistics used in Method 1 assume that the brightness of each pixel is a random

variable independent of its neighboring pixels: that is, that the noise is spatially uncorrelated. This

assumtion is violated for speckle residuals close to a star, and for a host of other stellar artifacts that

are present in AO images (ghosts, diffraction rays, etc.). We have confirmed by careful tests that

in the presence of speckle noise, Method 1 overestimates the true point-source sensitivity by up to

0.9 magnitudes. This applies to a good implementation of the method in which σpix is calculated

over image regions spanning many PSF sizes. When the statistics region used is too small, the

sensitivity will be overestimated even more.

The problem with Method 1 is that clumps of correlated bright or dark pixels introduce more

PSF-scale noise into the image than can be predicted from the single-pixel RMS. A simple solution

is to sums up the brightness within many apertures of radius r, spaced through an assigned region,

and then σPSF is simply the RMS variation of the sums. This is sensitivity estimation by aperture

photometry of the noise background. Again, it is important to calculate the statistic over an image

region large enough to contain many PSFs. We will call this Method 2. As with Method 1, an

aperture correction must be applied as a final step.

Method 3 has already been described in Heinze et al. (2008). It is analagous to Method 2, but

rather than performing aperture photometry at many locations in the image, one performs PSF-

fitting photometry. If the PSF has been properly normalized, no aperture correction is necessary

for this method. In tests using our own real data, we find that Methods 2 and 3 agree to within

reasonable uncertainty everywhere, while Method 1 agrees with the other two only in regions of very

clean sky. Method 1 overestimates the sensitivity by about 0.2 magnitudes in the presence even of

very faint ghost residuals, and by about 0.9 magnitudes in the strong residual speckle noise close

to the star. In a field where Method 1-like estimators have been widely used, this should constitute

a warning: they severely overestimate sensitivity at small angular separations from stars, where

planets are probably most likely to occur!

Herein, as in Heinze et al. (2008), we have used Method 3 for our final sensitivity maps. Far

from the primary star star, the region we use for calculating the sensitivity statistic is a disk of
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radius 8 pixels (0.39 arcsec, or about 3 λ/D): that is, large enough to span many PSF-sizes, but

small enough to sample the local noise properties. Close to the star (that is, within 60 pixels or 2.9

arcsec), we use instead an arc 45 pixels (2.2 arcsec) long and 1 pixel wide, at a fixed radius from

the star. These disks or arcs are centered in turn on every pixel of each image, with the calculated

statistics forming a sensitivity map.

4.2. Sensitivity Obtained

After making a sensitivity map from the stacked image produced by each processing method

applied to the data from a given star, we apply a slight smoothing to the different maps, and then

combine them into a single master sensitivity map. They are combined such that the master sensi-

tivity image shows at each location the best sensitivity obtained at that location by any processing

method that was applied. We quote 10σ sensitivities: that is, the point source sensitivity is ten

times the σPSF statistic from Method 3. Figures 4, 5, and 6 give example sensitivity contour maps

for our L′ observations of GJ 896 and GJ 117, and our M band observations of 61 Cyg B, respec-

tively, with 10σ sensitivities given in apparent magnitudes. Figures of this type for all the stars

observed in our survey can be downloaded from http://www.hopewriter.com/Data/SurveyPaper/.

For use in the Monte Carlo simulations to be described in Section 7 below, we have converted

our sensitivity maps into plots of sensitivity vs. projected radius from each star. As can be

seen from Figures 4 through 6, however, our sensitivity varied widely with position angle around

the star. To quantify this, we calculated ten different sensitivity values at each radius, giving

the percentiles in sensitivity from 0th to 90th percentile in 10% increments. Thus, e.g., the 0th

percentile at 2 asec is the very worst sensitivity obtained anywhere on the 2 asec-radius ring

surrounding the star, while the 50th percentile gives the median sensitivity at that radius. In

Figures 7 and 8, we give example plots for GJ 896 A, GJ 117, 61 Cyg B (M band), and ǫ Eri, with

the sensitivities converted to minimum detectable planet mass in MJ using models from Burrows

et al. (2003), plotted against projected separation in AU. Plots of this type for all the stars in our

survey, as well as the tabular data from which they were constructed, can be downloaded from

http://www.hopewriter.com/Data/SurveyPaper/.

4.3. Source Detection

While our final sensitivity maps are constructed using only Method 3, as described above, we

use both Methods 2 and 3 for automated source detection. The use of both methods increases our

likelihood of noticing faint sources at the limit of detectability. To search an image for sources

using either method, we query each pixel in turn to see if a source is present at that location. First,

we calculate the sensitivity statistic (Method 2 or Method 3) over either a disk or an arc, just as

described in Section 4.1, except that a PSF-sized region around the pixel being considered is not



– 25 –

Fig. 4.— Final sensitivity contour map for the binary star GJ 896 AB. 10σ sensitivities from

our Method 3 estimator are presented, converted to apparent L′ magnitudes. The grid squares

superposed for astrometric reference are 2×2 arcsec. The darkest contour from the colorbar is not

present as the 10σ sensitivity in this data set never exceeded L′ = 16.3.
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Fig. 5.— Final sensitivity contour map for the star GJ 117. 10σ sensitivities from our Method 3

estimator are presented, converted to apparent L′ magnitudes. The grid squares superposed for

astrometric reference are 2×2 arcsec, with the primary star in the figure’s center. The darkest two

contours from the colorbar are not present as the 10σ sensitivity in this data set never exceeded

L′ = 16.0.
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Fig. 6.— Final sensitivity contour map for our M band observations of the star 61 Cyg B (GJ 820

B). 10σ sensitivities from our Method 3 estimator are presented, converted to apparent M band

magnitudes. The grid squares superposed for astrometric reference are 2×2 arcsec.
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Fig. 7.— Minimum detectable planet mass vs. projected separation in AU for GJ 896 A (left) and

GJ 117 (right). 10σ detection limits from Method 3 are shown, converted to planet mass using

models from Burrows et al. (2003). Planetary orbits around GJ 896 A would be destabilized beyond

about 12 AU by the companion star GJ 896 B. In order from bottom to top, the curves give the

90th, 80th, 70th, 60th, 50th, 40th, 30th, 20th, 10th, and 0th percentile sensitivity at each radius.

Fig. 8.— Minimum detectable planet mass vs. projected separation in AU for 61 Cyg B (M band

data; left), and ǫ Eri (right). 10σ detection limits from Method 3 are shown, converted to planet

mass using models from Burrows et al. (2003). In order from bottom to top, the curves give the

90th, 80th, 70th, 60th, 50th, 40th, 30th, 20th, 10th, and 0th percentile sensitivity at each radius.
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included, so that if a real source is present, it will not bias the sensitivity estimator. Finally, either

aperture photometry (Method 2) or PSF-fitting (Method 3) is applied at the location of the pixel

itself, measuring the brightness of any source that may be present there. If the resulting brightness

is greater than the sensitivity statistic by a specified threshold factor (i.e., 5 for a 5σ detection), a

preliminary detection is reported.

We would like to set the threshold as low as possible without getting an unmanageable number

of spurious detections. To this end, we divided each data set into the first half of the images and

the second half, and created a stacked image from each half. To be reported by our automated

detection code, a source had to appear at 4.5σ significance in the full stack, and at 3σ significance

on each half-stack, at a location consistent to within 2 pixels. This eliminated residual ghosts

and other artifacts, which would appear in different locations on the two halves of the data due

to parallactic rotation. Around 10-20 spurious automated detections were nonetheless reported

around each star.

A real source could also be missed by the automatic algorithm but noticed manually. For

example, due to parallactic rotation, a location might have valid data only for the first half of

the data sequence, rendering an automated detection of a real source there impossible. Every

automated detection, as well as candidate sources noticed only by eye, was carefully examined

manually. Criteria applied included correct FWHM and symmetry, consistency in position and

brightness from one half-stack to the other, and inability to be explained away as an artifact of

ghosts, diffraction rays, etc. If necessary, data stacks were split into quarters or even finer divisions

to verify sources where only a fraction of the images provided useful data. Every source that passed

this final manual analysis was found to correspond to a real astronomical object. There were no

false positives.

4.4. Blind Sensitivity Tests

The final demonstration of the validity of a sensitivity estimator is a blind sensitivity test,

in which fake planets are inserted into the raw data and then recovered by an experimenter (or

automated process) without a-priori knowledge of their positions or their number. Such a blind

test is the surest way to evaluate any sensitivity estimator and establish the relationship between

nominal significance (i.e. 3σ, 5σ, etc.) and the true completeness level of the survey. This should

be standard procedure for all planet imaging surveys.

We inserted simulated planets at random locations in the raw data for selected stars. The

flux of each simulated planet was scaled to 5, 7, or 10σ significance based on the master sensitivity

map described above. The data was then processed exactly as for the real, unmodified science data

for that star, and planets were sought in the fully processed images by the same combination of

manual and automatic methods used for the real images.

The final result of each test was that every inserted planet was classified as ‘Confirmed’, ‘No-
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ticed’, or ‘Unnoticed’. ‘Confirmed’ means the source was confidently detected, with no significant

doubt of its being a real object. ‘Noticed’ means the source was flagged by our automatic detection

algorithm, or noticed manually as a possible real object, but could not be confirmed beyond rea-

sonable doubt. Many spurious sources are ‘Noticed’ whereas the false-positive rate for ‘Confirmed’

detections is extremely low, with none for any of the data sets discussed here. ‘Unnoticed’ means

a fake planet was not automatically flagged or noticed manually.

Tables 5 through 9 give the results of these simulations.
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Table 5. GJ 450 fake planet experiment.

Sep Mass Detection

(asec) L′ Mag (MJ) Significance Status

0.51 12.53 >20 10.00σ Confirmed

0.56 13.32 >20 10.00σ Confirmed

0.95 15.35 11.26 10.00σ Confirmed

1.14 15.60 10.54 10.00σ Confirmed

1.27 15.96 9.51 10.00σ Confirmed

1.58 16.06 9.21 10.00σ Confirmed

1.90 16.51 7.93 10.00σ Confirmed

2.50 16.59 7.73 10.00σ Confirmed

2.69 16.57 7.78 10.00σ Confirmed

2.91 16.38 8.29 10.00σ Confirmed

2.98 16.60 7.70 10.00σ Confirmed

3.71 16.51 7.93 10.00σ Confirmed

3.90 16.59 7.73 10.00σ Confirmed

3.93 16.62 7.65 10.00σ Confirmed

5.02 16.49 7.98 10.00σ Confirmed

6.52 16.43 8.15 10.00σ Confirmed

6.53 16.27 8.61 10.00σ Confirmed

Note. — All of the input planets were confirmed.

Planet magnitude to mass conversion carried out by in-

terpolation based on theoretical spectra from Burrows et

al. (2003).
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Table 6. HD 29391 fake planet experiment.

Sep Mass Detection

(asec) L′ Band Mag (MJ) Significance Status

0.42 11.59 >20 10.00σ Confirmed

0.76 12.56 16.85 10.00σ Confirmed

1.23 15.35 4.97 10.00σ Confirmed

2.06 15.90 3.92 10.00σ Confirmed

2.27 16.10 3.63 10.00σ Confirmed

3.26 14.58 6.95 10.00σ Confirmed

3.60 15.77 4.15 10.00σ Confirmed

4.29 15.48 4.72 10.00σ Confirmed

4.41 16.22 3.46 10.00σ Confirmed

5.31 16.21 3.47 10.00σ Confirmed

8.92 16.15 3.56 10.00σ Confirmed

10.69 16.15 3.56 10.00σ Confirmed

1.25 15.17 5.40 7.00σ Confirmed

1.86 16.32 3.31 7.00σ Confirmed

2.00 16.47 3.09 7.00σ Unnoticed

2.69 16.54 2.99 7.00σ Unnoticed

2.92 16.61 2.93 7.00σ Noticed

3.29 16.47 3.09 7.00σ Confirmed

4.69 15.83 4.03 7.00σ Noticed

5.72 16.38 3.22 7.00σ Confirmed

6.28 15.97 3.82 7.00σ Noticed

10.53 15.94 3.86 7.00σ Confirmed

1.19 15.39 4.89 5.00σ Confirmed

1.93 16.77 2.78 5.00σ Noticed

5.76 16.57 2.97 5.00σ Noticed

6.68 16.25 3.41 5.00σ Unnoticed

7.70 16.18 3.51 5.00σ Unnoticed

Note. — Planets confirmed: 12/12 at 10σ; 5/10 at 7σ; 1/5

at 5σ. Planets noticed: 12/12 at 10σ; 8/10 at 7σ; 3/5 at 5σ.
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Planet magnitude to mass conversion carried out by interpola-

tion based on theoretical spectra from Burrows et al. (2003).
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Table 7. GJ 117 fake planet experiment.

Sep Mass Detection

(asec) L′ Band Mag (MJ) Significance Status

0.67 10.41 >20.0 10.00σ Confirmed

0.94 11.54 15.42 10.00σ Confirmed

1.10 12.05 12.21 10.00σ Confirmed

2.11 15.01 3.42 10.00σ Confirmed

2.17 14.78 3.75 10.00σ Confirmed

3.31 14.93 3.53 10.00σ Confirmed

3.77 15.20 3.14 10.00σ Confirmed

6.40 14.72 3.84 10.00σ Confirmed

6.42 15.26 3.05 10.00σ Confirmed

8.60 15.06 3.35 10.00σ Confirmed

9.88 14.56 4.09 10.00σ Confirmed

1.14 12.54 9.77 7.00σ Confirmed

3.08 15.44 2.87 7.00σ Noticed

5.06 15.35 2.96 7.00σ Confirmed

6.37 14.67 3.91 7.00σ Noticed

7.04 14.66 3.93 7.00σ Noticed

7.88 15.27 3.05 7.00σ Noticed

1.04 12.31 10.83 5.00σ Confirmed

1.75 15.12 3.26 5.00σ Unnoticed

2.89 15.96 2.40 5.00σ Unnoticed

3.30 16.16 2.21 5.00σ Unnoticed

5.08 16.00 2.36 5.00σ Confirmed

7.80 15.32 2.98 5.00σ Noticed

8.03 15.65 2.68 5.00σ Unnoticed

10.21 15.30 3.00 5.00σ Noticed

Note. — Planets confirmed: 11/11 at 10σ; 2/6 at 7σ; 2/8

at 5σ. Planets noticed: 11/11 at 10σ; 6/6 at 7σ; 4/8 at 5σ.

Planet magnitude to mass conversion carried out by interpo-

lation based on theoretical spectra from Burrows et al. (2003).
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Note that a fake planet with a mass of only 2.36 MJ was con-

firmed.
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Table 8. GJ 355 fake planet experiment.

Sep Mass Detection

(asec) L′ Band Mag (MJ) Significance Status

0.37 9.46 >20.0 10.00σ Confirmed

0.43 9.66 >20.0 10.00σ Confirmed

0.94 13.72 13.10 10.00σ Confirmed

1.67 15.61 5.74 10.00σ Confirmed

1.74 15.66 5.63 10.00σ Confirmed

1.85 15.74 5.43 10.00σ Confirmed

2.05 15.63 5.70 10.00σ Confirmed

2.37 15.87 5.11 10.00σ Noticed

3.08 15.60 5.78 10.00σ Confirmed

3.30 15.92 5.00 10.00σ Confirmed

3.44 15.73 5.46 10.00σ Confirmed

4.26 16.02 4.80 10.00σ Confirmed

5.55 15.87 5.12 10.00σ Confirmed

8.09 15.55 5.89 10.00σ Confirmed

8.70 15.34 6.46 10.00σ Confirmed

1.57 15.95 4.93 7.00σ Noticed

2.83 16.24 4.37 7.00σ Noticed

3.68 16.04 4.77 7.00σ Confirmed

4.34 16.01 4.82 7.00σ Confirmed

4.68 16.33 4.19 7.00σ Noticed

6.99 15.95 4.94 7.00σ Confirmed

1.92 16.58 3.78 5.00σ Unnoticed

3.24 16.52 3.87 5.00σ Unnoticed

5.61 15.93 4.99 5.00σ Noticed

5.99 15.86 5.16 5.00σ Noticed

7.17 15.94 4.97 5.00σ Noticed

10.07 16.31 4.23 5.00σ Confirmed
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Note. — Planets confirmed: 14/15 at 10σ; 3/6 at 7σ; 1/6

at 5σ. Planets noticed: 15/15 at 10σ; 6/6 at 7σ; 4/6 at 5σ.

Planet magnitude to mass conversion carried out by interpola-

tion based on theoretical spectra from Burrows et al. (2003).
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The total statistics from all 5 blind tests are that 63 of 65 planets were confirmed at 10σ, 13

of 28 at 7σ, and 4 of 25 at 5σ. In percentages we have 97% completeness at 10σ, 46% completeness

at 7σ, and 16% completeness at 5σ.

Note the very low completeness at 5σ, which many past surveys have taken as a realistic

detection limit. Though sensitivity estimators (and therefore the exact meaning of 5σ) differ,

ours was quite conservative. The low completeness we find at 5σ should serve as a warning to

future workers in this field, and an encouragement to establish a definitive significance-completeness

relation through blind sensitivity tests as we have done. Many more planets were noticed than were

confirmed: for noticed planets, the rates are 100% at 10σ, 86% at 7σ, and 56% at 5σ. However,

very many false positives were also noticed, so sources that are merely noticed but not confirmed

do not represent usable detections. No false positives were confirmed in any of our blind tests.

Our low 5σ completeness level for confirmed planets has several causes. First, some flux is lost

from faint sources in our processing, as described above, so that sources input at 5σ significance are

reduced to a real significance of typically 4σ in the final image. Second, since our images contain

speckles, ghosts, diffraction rays, and pattern noise, the noise is not gaussian but rather has a long

tail toward improbable, bright events. Third, the area of each final image is over 105 times the size

of a PSF, so the distribution of possible spurious planet images arising from noise is sampled at

least 105 times for each final image in our survey. Followup observations of suspected sources are

costly in terms of telescope time, so a detection strategy with a low false-positive rate is important.

Some or all of these considerations apply to all other planet-imaging surveys, again making blind

sensitivity tests important.

5. Detections of Faint Real Objects

5.1. Overview of Detected Companions

In all, thirteen faint sources were confirmed as real. Table 5.1 presents our astrometry and

photometry for each detected companion.

Of these 13 faint companions, one is a newly discovered low mass star orbiting GJ 3876, one

is a previously known binary brown dwarf companion to GJ 564 (Potter et al. 2003), and the other

eleven are background stars. Note that Lafrenière et al. (2007), operating in the H band regime,

found more than 300 background stars. Due to the red IR colors of planets, a long wavelength survey

such as ours can obtain good sensitivity to planets while remaining blind to all but the brightest

stars, so that less telescope time is needed to follow up candidate objects. Also, a background star

masquerading as a planet at L′ can often be detected in a short integration at shorter wavelengths,

showing that the object is far too blue in IR color to be a planet. We have used this method to

confirm that the brighter of the two companions of BD+20 1790 and the faint companions near HD

96064, BD+60 1417, and GJ 3860 are background stars. It gives results immediately, in contrast
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Table 9. BD+48 3686 fake planet experiment.

Sep Mass Detection

(asec) L′ Band Mag (MJ) Significance Status

0.23 8.03 >20.0 10.00σ Confirmed

0.97 14.65 13.89 10.00σ Noticed

1.33 15.19 10.47 10.00σ Confirmed

2.05 15.51 9.05 10.00σ Confirmed

4.33 15.57 8.85 10.00σ Confirmed

5.08 15.70 8.41 10.00σ Confirmed

6.13 15.52 9.04 10.00σ Confirmed

6.34 14.70 13.53 10.00σ Confirmed

8.41 15.38 9.60 10.00σ Confirmed

9.73 15.46 9.26 10.00σ Confirmed

1.46 15.62 8.67 7.00σ Confirmed

2.55 15.86 7.87 7.00σ Noticed

3.76 16.15 7.05 7.00σ Unnoticed

5.25 15.72 8.32 7.00σ Confirmed

5.73 15.66 8.53 7.00σ Unnoticed

10.43 15.41 9.50 7.00σ Confirmed

1.08 15.63 8.66 5.00σ Noticed

3.04 16.39 6.45 5.00σ Unnoticed

3.34 16.29 6.70 5.00σ Unnoticed

5.69 16.40 6.42 5.00σ Noticed

9.19 16.17 7.00 5.00σ Unnoticed

10.22 15.97 7.56 5.00σ Noticed

Note. — Planets confirmed: 9/10 at 10σ; 3/6 at 7σ; 0/6

at 5σ. Planets noticed: 10/10 at 10σ; 4/6 at 7σ; 3/6 at 5σ.

Planet magnitude to mass conversion carried out by interpola-

tion based on theoretical spectra from Burrows et al. (2003).
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Fig. 9.— Fully processed ‘e’ method master image from the blind sensitivity test on HD 29391.

Identifying the simulated planets is left as an exercise for the reader. The contrast stretch chosen

here makes visible all the planets except the innermost and brightest ones, which are lost in speckle

noise that saturates the image display range. In this data set there are 12 planets of 10σ significance,

10 at 7σ, and 5 at 5σ
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Table 10. Confirmed Sources in Our Survey

Star Det. L′ Sep Date

Name Sig. Mag (asec) PA Obs

GJ 354.1A 4.93σ 16.37 4.93 187.3◦ 06/04/12

GJ 564 175.68σ 10.80 2.60 103.0◦ 06/04/13

GJ 3876 246.38σ 10.88 1.85 118.6◦ 06/04/13

GJ 3860 19.21σ 14.53 9.68 144.4◦ 06/06/09

61 Cyg A · · · 12.43 11.24 227.5◦ 06/06/09

61 Cyg A 32.82σ 13.05 7.78 83.2◦ 06/06/09

61 Cyg B · · · 14.04 9.85 145.4◦ 06/06/10

BD+60 1417 11.91σ 15.70 1.93 301.4◦ 06/06/10

GJ 684 A 7.23σ 15.00 3.01 358.5◦ 06/06/11

GJ 860 A · · · 15.76 7.24 0.25◦ 06/06/12

BD+20 1790 31.51σ 14.41 8.73 74.1◦ 07/01/04

BD+20 1790 · · · 15.16 6.42 336.4◦ 07/01/04

HD 96064A 43.18σ 13.72 5.57 212.8◦ 07/01/04

Note. — The detection significance column gives the highest

significance with which the source was automatically detected

on any image with any method. Blanks in this column imply

sources that were detected only manually. Uncertainties on the

astrometry are about 0.05 asec or less; note that the position

angle values of close-in companions are thus more uncertain

than those of distant ones. Photometry is accurate to roughly

0.2 magnitudes; the photometry of GJ 564 is probably too faint

because the aperture correction will not have been accurate for

this close binary.
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to proper motion confirmation.

We note that the sources around HD 96064 A and BD+60 1417 were independently detected in

the Lafrenière et al. (2007) survey, and confirmed to be background objects based on proper motions.

The HD 96064 A source looks double in our data, and was confirmed to be so by Lafrenière et al.

(2007).

The companion of GJ 354.1 A is confirmed to be a background star rather than a common

proper motion companion based on an image by Lowrance et al. (2005). The fainter of the two

companions of BD+20 1790 is similarly shown to be a background object by an archival HST image.

The companions of 61 Cyg A and B are background objects based on detections on POSS plates

from 1991, when, due to the 61 Cyg system’s fast proper motion, the objects were much farther

from the bright stars and therefore beyond the glare on the POSS images. The companion of GJ

860 is confirmed to be a background star based on previous detections on POSS plates from 1953,

and optical images of our own taken with the University of Arizona 1.5m Kuiper Telescope in 2005

(the latter simply prove the object is too bright in the optical to be a planet). The POSS position

match is imperfect, and our optical detection is at low significance, but taken together they confirm

the object’s nature. The companion of GJ 684 is shown to be a background star based on proper

motion in followup images we obtained using Clio in September 2008.

Figures 10 through 15 show all of our detected companions, except the companion of HD 96064,

which has already been shown in Figure 2. Each of these images is from a ‘d’ method reduction of

long exposure science data.

5.2. The Low-Mass Star GJ 3867 B

The single discovery of our survey is the low-mass stellar companion of GJ 3876. We first

detected it on L′ images from April 13, 2006, and confirmed it as a common proper motion com-

panion in L′, M , and KS images taken on April 11, 2007. Table 5.2 gives our photometric and

astrometric results, complete with what the object’s position should have been in April 2007 if it

were a background star.

GJ 3876 B is clearly a common proper motion companion. The distance to the primary star

is about 43 pc, based on the parallax from Perryman et al. (1997). This translates to a projected

separation of about 80 AU, which suggests and orbital period of around 700 yr for a one solar mass

primary. The constant position angle over a year seems inconsistent with a face-on orbit at this

period, while the formally insignificant increase in separation may hint at motion in a more inclined

orbit – however, much more data is needed.

Again using the Perryman et al. (1997) distance, the KS absolute magnitude of GJ 3876 B

is 8.33 ± 0.22. Based on the models of Baraffe et al. (1998), this translates into a mass of about

0.15 ± 0.01M⊙. This estimate could be further investigated using our L′ and M band magnitudes,
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Fig. 10.— (A) L′ image of GJ 564, showing the binary brown dwarf discovered by Potter et al.

(2003). (B) L′ image of GJ 3876, showing the low-mass stellar companion we discovered. (C) L′

image of BD+60 1417, showing the faint background star we detected. (D) L′ image of binary star

GJ 684, showing the faint background star we detected. Each tile is 4.86 arcsec square; the bottom

tiles are contrast stretched 10× more than the top ones to reveal the faint companions.
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Fig. 11.— Left, L′ image of GJ 354.1 A, showing the faint background star we detected. Right,

L′ image of binary star GJ 860, again showing a faint background star. Each image is 9.71 arcsec

square, contrast stretched the same as the lower panels in Figure 10 to reveal the faint objects.

Table 11. Discovery Data for GJ 3876 B

Date Sep PA

(yy/mm/dd) (arcsec) (degrees) KS L′ M

06/04/13 1.8518 ± 0.0038 118.57 ± 0.19 · · · 10.88 ± 0.06 · · ·
07/04/11 1.8603 ± 0.0082 118.64 ± 0.24 11.51 ± 0.22 10.79 ± 0.08 10.91 ± 0.28

Background 1.6487 113.73 · · · · · · · · ·

Note. — Astrometry and photometry of the single discovery of our survey, GJ 3876 B. The

first two rows give actual measured values; the last gives the predicted position for 07/04/11

if the object were a background star, based on the 06/04/13 position and a proper motion

measurement from Perryman et al. (1997). The background star hypothesis is rejected with

great confidence.



– 45 –

Fig. 12.— L′ image of BD+20 1790, showing two faint background stars. Image is 24.29 arcsec

square, contrast stretched 3× less than the images in Figure 11, to give a clear view of these

somewhat brighter stars.
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Fig. 13.— L′ image of 61 Cyg A, showing two faint background stars. Image is 24.29 arcsec square,

contrast stretched the same as the previous figure.
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Fig. 14.— L′ image of 61 Cyg B, showing a faint background star. Image is 24.29 arcsec square,

contrast stretched the same as the previous figure.
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Fig. 15.— L′ image of GJ 3860, showing a faint background star. Image is 24.29 arcsec square,

contrast stretched the same as the previous figure.
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but model magnitudes for low mass stars in these bands are not readily available in the literature,

and integrating them from theoretical spectra is beyond the scope of a paper focused on planets.

6. Statistical Distributions from RV Planets

Nearly 300 RV planets are known. See Butler et al. (2006) for a useful, conservative listing of

confirmed extrasolar planets as of 2006, or http://exoplanet.eu/catalog-RV.php for a frequently-

updated catalog of all confirmed and many suspected extrasolar planet discoveries.

The number of RV planets is sufficient to make meaningful statistical analyses of how extrasolar

planets are distributed in terms of their masses and orbital semimajor axes. The lowest mass planets

and those with the longest orbital periods are generally rejected from such analyses to reduce bias

from completeness effects, but there remains a considerable range (2-2000 days in period, or roughly

0.03-3.1 AU in semimajor axis for solar-type stars; and 0.5-20 MJ in mass) where RV searches have

good completeness. There is evidence that the shortest period planets, or ‘hot Jupiters,’ represent

a separate population, a ‘pileup’ of planets in very close-in orbits that does not follow the same

statistical distribution as planets in more distant orbits (Cumming et al. 2008). The hot Jupiters

are therefore often excluded from statistical fits to the overall populations of extrasolar planets, or

at least from the fits to the semimajor axis distribution.

Cumming et al. (2008) characterize the distribution of RV planets detected in the Keck Planet

Search with an equation of the form

dN = C0M
αLP βLd ln(M)d ln(P ). (2)

where M is the mass of the planet, P is the orbital period, and C0 is a normalization constant.

They state that 10.5% of solar-type stars have a planet with mass between 0.3 and 10 MJ and

period between 2 and 2000 days, which information can be used to derive a value for C0 given

values for the power law exponents αL and βL. They find that the best-fit values for these are

αL = −0.31 ± 0.2 and βL = 0.26 ± 0.1, where the L subscript is our notation to make clear that

these are the exponents for the form using logarithmic differentials.

In common with a number of other groups, we choose to represent the power law with ordinary

differentials, and to give it in terms of orbital semimajor axis a rather than orbital period P :

dN = C0M
αaβdMda. (3)

Where C0, of course, will not generally have the same value for Equations 2 and 3. Manipu-

lating the two equations and using Kepler’s Third Law makes it clear that
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α = αL − 1. (4)

and

β =
3

2
βL − 1. (5)

The Cumming et al. (2008) exponents produce α = −1.31 ± 0.2 and β = −0.61 ± 0.15 when

translated into our form. The mass power law is well behaved, but the integral of the semimajor axis

power law does not converge as a → ∞, so an outer truncation radius is an important parameter

of the semimajor axis distribution.

The excellent paper presenting the 2006 Catalog of Nearby Exoplanets (Butler et al. 2006)

carefully describes a heterogenous sample of extrasolar planets detected by several different RV

search programs. With appropriate caution, Butler et al. (2006) refrain from quoting confident

power law slopes based on the combined discoveries of many different surveys with different detec-

tion limits and completeness biases (in contrast, the Cumming et al. (2008) analysis was restricted

to stars in the Keck Planet Search, which were uniformly observed up to a given minimum baseline

and velocity precision). Butler et al. (2006) do tentatively adopt a power law with the form of

Equation 3 for mass only, and state that α appears to be about -1.1 (or -1.16, to give the exact

result of a formal fit to their list of exoplanets). However they caution that due to their hetero-

geneous list of planets discovered by different surveys, this power law should be taken more as a

descriptor of the known planets than of the underlying distribution. They do not quote a value for

the semimajor axis power law slope β.

Based mostly on Cumming et al. (2008), but considering Butler et al. (2006) as helpful addi-

tional input, we conclude that the true value of the mass power law slope α is probably between -1.1

and -1.51, with -1.31 as a good working model. The value of the semimajor axis power law slope

β is probably between -0.46 and -0.76, with -0.61 as a current best guess. The outer truncation

radius of the semimajor axis distribution cannot be constrained by the RV results: surveys like

ours exist, in part, to constrain this interesting number.

The only other result we need from the RV searches is a normalization that will allow us to

find C0. We elect not to use the Cumming et al. (2008) value (10.5% of stars having a planet with

mass between 0.3 and 10 MJ and period between 2 and 2000 days), because this range includes the

hot Jupiters, a separate population.

We take our normalization instead from the Carnegie Planet Sample, as described in Fischer

& Valenti (2005). Their Table 1 (online only) lists 850 stars that have been thoroughly investigated

with RV. They state that all planets with mass at least 1 MJ and orbital period less than 4 years

have been detected around these stars. Forty-seven of these stars are marked in Table 1 as having

RV planets. Table 2 from Fischer & Valenti (2005) gives the measured properties of 124 RV planets,
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including those orbiting 45 of the 47 stars listed as planet-bearing in Table 1. The stars left out

are HD 18445 and and HD 225261. We cannot find any record of these stars having planets, and

therefore as far as we can tell they are typos in Table 1.

Since all planets with mass above 1 MJ and period less than 4 years orbiting stars in the

Fischer & Valenti (2005) list of 850 may be relied upon to have been discovered, we may pick any

sub-intervals in this range of mass and period, and divide the number of planets falling into these

intervals by 850 to obtain our normalization. We selected the range 1-13 MJ in mass, and 0.3-2.5

AU in semimajor axis. Twenty-eight stars, or 3.29% of the 850 in the Fischer & Valenti (2005) list,

have one or more planets in this range. Our inner limit of 0.3 AU excludes the hot Jupiters, and

thus the 3.29% value provides our final normalization. We note that if we adopt the Cumming et

al. (2008) best-fit power laws, and use the 3.29% normalization to predict the percentage of stars

having planets with masses between 0.3 and 10 MJ and orbital periods between 2 and 2000 days,

we find a value of 9.3%, which is close to the Cumming et al. (2008) value of 10.5%. The slight

difference is probably not significant, but might be viewed as upward bias in the Cumming et al.

(2008) value due to including the hot Jupiters.

Juric & Tremaine (2007) provide a helpful mathematical description of the eccentricity dis-

tribution of known RV planets:

P (ǫ) = ǫe−ǫ2/(2σ2). (6)

where P (ǫ) is the probability of a given extrasolar planet’s having orbital eccentricity ǫ, e is

the root of the natural logarithm, and σ = 0.3. In Figure 16 we show the Juric & Tremaine (2007)

eccentricity distribution overlaid on a histogram of the eccentricities of 51 planets from Table 2

of Fischer & Valenti (2005) that have masses between 1 and 13 MJ and semimajor axis between

0.3 and 2.5 AU. The agreement is excellent, so we have used this eccentricity distribution for the

Monte Carlo simulations we describe in Section 7 below.

7. Constraints on the Distribution of Planets

7.1. Theoretical Spectra

Burrows et al. (2003) present high resolution, flux-calibrated theoretical spectra of giant planets

or brown dwarfs for ages ranging from 0.1-5.0 Gyr and masses from 1 to 20 MJ (these are available

for download from http://zenith.as.arizona.edu/˜burrows/). We have integrated these spectra to

give absolute magnitudes in the L′ and M filters used in Clio, and have found that the results can

be reasonably interpolated to give the L′ or M band magnitudes for all planets of interest for our

survey. Baraffe et al. (2003) also present models of giant planets and brown dwarfs, pre-integrated

into magnitudes in the popular infrared bands. These models predict slightly better sensitivity

to low mass planets in the L′ band and slightly poorer sensitivity in the M band, relative to the
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Fig. 16.— Histogram of orbital eccentricities for 51 RV planets from Fischer & Valenti (2005), with

the distribution from Juric & Tremaine (2007) overplotted. The fit appears very good, hence we

have used this distribution to generate eccentricities for planets in our Monte Carlo simulations.
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Burrows et al. (2003) models. We cannot say if the difference is due to the slightly different filter

sets used (MKO for Clio vs. Johnson-Glass and Johnson for Baraffe et al. (2003)), or if it is intrinsic

to the different model spectra used in Burrows et al. (2003) and Baraffe et al. (2003). We have

chosen to use the Burrows et al. (2003) models exclusively herein, to avoid any errors due to the

slight filter differences. Since the Burrows et al. (2003) models predict less good sensitivity in the L′

band, in which the majority of our survey was conducted, our decision to use them is conservative.

7.2. Introducing the Monte Carlo Simulations

In common with several other surveys (Kasper et al. 2007; Biller et al. 2007; Lafrenière et al.

2007) we have used our survey null result to set upper limits on planet populations via Monte Carlo

simulations. In these simulations, we input our sensitivity data in the form of tabular files giving

the sensitivity in apparent magnitudes as a function of separation in arcseconds for each star. Ten

different sensitivity percentiles are calculated at each radius, as described in Section 4.1 above.

Each Monte Carlo simulation requires as input the planet distribution power law slopes α and

β, and an outer truncation value Rtrunc for the semimajor axis distribution. Using the normalization

described in Section 6, the probability Pplan of any given star having a planet between 1 and 20

MJ is then calculated from the input α, β, and Rtrunc. In each realization of our survey, each

star is randomly assigned a number of planets, based on Poisson statistics with mean Pplan. In

most cases Pplan << 1, so the most likely number of planets is zero. If the star is found to have

one or more planets, the mass and semimajor axis of each are randomly selected from the input

power law distributions. The eccentricity is randomly selected from the Juric & Tremaine (2007)

distribution, and an inclination is randomly selected from the distribution P (i) ∝ sin(i). If the star

is a binary, the planet may be dropped from the simulation at this point if the orbits seems likely

to be unstable. In general we consider circumstellar planets to be stable as long as their apastron

distance is less than 1/3 the projected distance to the companion star, and circumbinary planets to

be stable as long as their periastron distance is at least 3× greater than the projected separation of

the binary. For planets orbiting low-mass secondaries, a smaller limit on the apastron distance is

sometimes imposed, while often circumbinary planets required such distant orbits that they were

simply not considered; the details are given in Table 14. For each planet passing the orbital stability

checkpoint, a full orbit is calculated using a binary star code by M. K. The projected separation in

asec is found, and the magnitude of the planet is calculated from its mass, distance, and age using

the Burrows et al. (2003) models.

Finally, two random choices decide to what sensitivity value the planet’s predicted magnitude

will be compared. First, one of the ten percentiles given in the sensitivity files is randomly selected.

Then, it is determined if the planet will be detectable at 5σ, 7σ, or 10σ. The probabilities here

follow the completeness levels: 16% chance the planet will be evaluated against the 5σ sensitivity;

if this option is not selected, an additional 30% chance the planet will be evaluated against 7σ; if

this option is not selected either, the planet will be evaluated against 10σ. Note that although we
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Table 12. L′ Band Absolute Mags from Burrows et al. (2003)

Planet Mass Mag at Mag at Mag at Mag at Mag at

in MJ 0.10 Gyr 0.32 Gyr 1.0 Gyr 3.2 Gyr 5.0 Gyr

1.0 19.074 23.010 27.870 33.50a 35.50a

2.0 16.793 19.351 23.737 28.398 29.479

5.0 14.500 16.397 18.588 22.437 24.407

7.0 13.727 15.390 17.336 20.131 21.574

10.0 12.888 14.437 16.246 18.480 19.466

15.0 12.00b 13.61b 14.773 16.816 17.691

20.0 11.30b 12.98b 14.190 15.967 16.766

aNo models for these very faint planets appear in Burrows et al. (2003). We have inserted ad hoc values to smooth

the interpolations. Any effect of the interpolated magnitudes for planets we could actually detect is negligible.

bNo models for these bright, hot planets appear in Burrows et al. (2003), which focuses on cooler objects. We have

added values from Baraffe et al. (2003) and then adjusted them to slightly fainter values to insure smooth interpolations.

Table 13. M Band Absolute Mags from Burrows et al. (2003)

Planet Mass Mag at Mag at Mag at Mag at Mag at

in MJ 0.10 Gyr 0.32 Gyr 1.0 Gyr 3.2 Gyr 5.0 Gyr

1.0 14.974 16.995 19.987 25.0a 26.0a

2.0 14.023 15.313 17.807 21.295 22.163

5.0 13.014 14.017 15.153 17.167 18.537

7.0 12.618 13.561 14.558 16.126 16.909

10.0 12.189 13.096 14.093 15.315 15.951

15.0 11.55b 12.60b 13.370 14.512 14.990

20.0 11.29b 12.21b 13.069 14.122 14.580

aNo models for these very faint planets appear in Burrows et al. (2003). We have inserted ad hoc values to smooth

the interpolations. Any effect of the interpolated magnitudes for planets we could actually detect is negligible.

bNo models for these bright, hot planets appear in Burrows et al. (2003), which focuses on cooler objects. We

have added values from Baraffe et al. (2003) and then adjusted them to slightly fainter values to insure smooth

interpolations.
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had 97% completeness at 10σ, we have elected to let all simulated planets be evaluated at least

compared to 10σ, because at only slightly above 10σ the true completeness certainly becomes 100%

for all practical purposes. Note that the random step deciding at what significance level to evaluate

the planet is independent of what the actual brightness of the planet might be. For example, the

10σ sensitivity at a planet’s location might be L′ = 15.3, in which case the planet would have a 16%

chance of being evaluated against a sensitivity of L′ = 16.05 (5σ), a 30% chance of being evaluated

against L′ = 15.69 (7σ), and a 54% chance of being evaluated against L′ = 15.3. However, the

simulated planet’s brightness could be anything: for example, L′ = 14.2 (sure to be detected), or

L′ = 19.8 (sure to be undetected).

7.3. A Detailed Look at a Monte Carlo Simulation

To evaluate the significance of our survey and provide some guidance for future work, we have

analyzed in detail a single Monte Carlo simulation. We chose the Cumming et al. (2008) best fit

values of α = −1.31 and β = −0.61, with the semimajor axis truncation radius set to 100 AU. The

simulation consisted of 50,000 realizations of our survey with these parameters.

In 38% of these simulated cases, our survey found zero planets, while 37% of the time it found

one, and 25% of the time it found two or more. The planet distribution we considered in this

simulation cannot be ruled out by our survey, since a null result such as we actually obtained turns

out not to be very improbable.

The median mass of planets detected was 11.36 MJ, the median semimajor axis was 43.5

AU, the median angular separation was 2.86 asec, and the median significance was 21.4σ. This

last number is interesting because it suggests that, for our survey, any real planet detected was

likely to appear at high significance, obvious even on a preliminary, ‘quick-look’ reduction of the

data. Therefore, such reductions should always be performed at the telescope, to allow immediate

followup if a candidate is seen.

We suspected that there would be a detection bias toward very eccentric planets, because these

would spend most of their orbits near apastron, where they would be easier to detect. This bias

did not appear at any measurable level in our simulation. However, there was a weak but clear

bias toward planets in low-inclination orbits, which, of course, spend more of their time at large

separations from their stars than do planets with nearly edge-on orbits.

A concern with any planet imaging survey is how strongly the results hinge on the best few

stars. A survey of 54 stars may have far less statistical power than the number would imply if the

best two or three stars had most of the probabilty of hosting detectable planets. Table 15 gives the

percentage of planets detected around each star in our sample based on our detailed Monte Carlo

simulation. Due to poor data quality, binary orbit constraints, or other issues, a few stars had zero

probability of detected planets given the distribution used here. In general, however, the likelihood

of hosting detectable planets is fairly well distributed.
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In Table 14, we give precise Clio astrometry of each binary star we observed, and include the

details of planetary orbital constraints used in the Monte Carlo simulations. Two binaries, ξ Boo

and GJ 702, were observed twice, once in L′ and once at M band. The 2σ difference in measured

separation between the two ξ Boo observations is pure measurement error, since they are only one

day apart. However, clear orbital motion is detected over the ten months spanned by our two

measurements of GJ 702. Note that HD 96064 B is a close binary star in its own right, so planets

orbiting it were limited in two ways: the apastron could not be too far out, or the orbit would be

rendered unstable by proximity to HD 96064 A – but the periastron also could not be too far in, or

the binary orbit of HD 96064 Ba and HD 96064 Bb would render it unstable. Planets individually

orbiting HD 96064 Ba or HD 96064 Bb were not considered in our survey, since to be stable the

planets would have to be far too close-in for us to detect them. The constraints described in Table

14 account for most of the stars in Table 15 with few or no detections reported.

A final question our detailed simulation can address is how important the M band observations

were to the survey results. In Table 16, we show that when M band observations were made, they

did substantially increase the number of simulated planets detected.
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Table 14. Binary Star Data and Constraints on Simulated Planet Orbits

Date Obs. apast. cons. periast. cons.

Star Name (dd/mm/yy) Sep.(asec) PA(deg) asec/AU asec/AU

HD 220140 A 03/12/06 10.828 ± 0.007 214.49±0.20 <3.61/71.3 No Orbits

HD 220140 B <2.17/42.8 NA

HD 96064 A 04/01/07 11.628 ± 0.007 221.61±0.20 <3.88/95.6 No Orbits

HD 96064 B <2.33/57.3 NA

HD 96064 Ba 04/01/07 0.217 ± 0.010 26.6±4.3 No Orbits >0.65/16.1

HD 96064 Bb No Orbits NA

GJ 896 A 13/07/06 5.366 ± 0.006 86.16± 0.20 <1.79/11.8 No Orbits

GJ 896 B <1.79/11.8 NA

GJ 860 A 12/06/06 2.386 ± 0.004 58.55±0.20 <0.79/3.17 >7.15/28.7

GJ 860 B <0.60/2.41 NA

ξ Boo A 10/06/06 6.345 ± 0.006 312.15±0.20 <2.12/14.2 No Orbits

ξ Boo B <2.12/14.2 NA

ξ Boo A (M) 11/06/06 6.327 ± 0.005 312.14±0.20 <2.12/14.2 No Orbits

ξ Boo B (M) <2.12/14.2 NA

GJ 166 B 03/12/06 8.781 ± 0.010 153.72±0.20 <2.20/10.6 No Orbits

GJ 166 C <2.20/10.6 NA

GJ 684 A 11/06/06 1.344 ± 0.002 323.84±0.20 <0.45/6.34 >4.03/56.8

GJ 684 B <0.27/3.80 NA

GJ 505 A 12/06/06 7.512 ± 0.006 104.92±0.20 <2.50/29.8 No Orbits

GJ 505 B <2.50/29.8 NA

GJ 702 A 09/06/06 5.160 ± 0.005 135.79±0.20 <1.76/8.85 >15.9/79.7

GJ 702 B <1.32/6.64 NA

GJ 702 A (M) 11/04/07 5.290 ± 0.004 134.69±0.20 <1.76/8.85 >15.9/79.7

GJ 702 B (M) <1.32/6.64 NA

HD 77407 A 05/01/07 1.698 ± 0.002 356.37±0.20 <0.57/17.2 >5.11/153.7

HD 77407 B <0.34/10.23 NA

Note. — The apastron constraints column shows the maximum apastron allowed for simu-

lated circumstellar planets before they were rejected as unstable. The periastron constraints

column shows the minimum periastron allowed for simulated circumbinary planets. In the sim-

ulation, circumbinary planets are assigned to the primary, hence this column has no meaning

for the secondaries. No Orbits simply means the simulation ruled out any stable orbits of the
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assigned type. Note the star HD 96064 B is itself a close binary; only circumbinary planets were

considered for it.
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Table 15. Percentage of Detected Planets Found Around Each Star

% of Total Median Median Median

Star Name Detected Planets Mass Semimajor Axis Separation

GJ 117 6.07 7.66 MJ 39.36 AU 3.64 asec

ǫ Eri 5.83 6.98 MJ 18.26 AU 4.35 asec

HD 29391 5.80 8.14 MJ 49.13 AU 2.71 asec

GJ 519 4.74 10.44 MJ 40.51 AU 3.28 asec

GJ 625 4.67 9.72 MJ 29.18 AU 3.48 asec

GJ 5 4.45 9.60 MJ 53.42 AU 3.08 asec

BD+60 1417 3.95 11.58 MJ 44.48 AU 2.05 asec

GJ 355 3.81 9.71 MJ 53.91 AU 2.34 asec

GJ 354.1 A 3.67 9.58 MJ 60.12 AU 2.64 asec

GJ 159 3.57 9.73 MJ 57.95 AU 2.71 asec

GJ 349 3.35 11.38 MJ 44.40 AU 3.17 asec

61 Cyg B 3.29 11.32 MJ 19.53 AU 4.08 asec

GJ 879 3.03 11.18 MJ 36.84 AU 3.69 asec

GJ 564 2.94 10.67 MJ 56.80 AU 2.70 asec

GJ 410 2.93 12.78 MJ 41.83 AU 3.03 asec

GJ 450 2.89 12.90 MJ 38.72 AU 3.66 asec

GJ 3860 2.68 12.70 MJ 49.72 AU 2.69 asec

HD 78141 2.58 12.47 MJ 57.00 AU 2.24 asec

BD+20 1790 2.51 12.14 MJ 58.33 AU 2.02 asec

GJ 278 C 2.20 12.68 MJ 54.56 AU 3.04 asec

GJ 311 2.19 12.55 MJ 52.07 AU 3.20 asec

HD 113449 2.17 12.52 MJ 59.31 AU 2.29 asec

GJ 211 2.10 13.59 MJ 50.51 AU 3.30 asec

BD+48 3686 2.08 12.56 MJ 55.05 AU 2.01 asec

GJ 282 A 2.05 13.39 MJ 49.85 AU 2.99 asec

GJ 216 A 2.03 12.71 MJ 42.98 AU 4.21 asec

61 Cyg A 1.97 13.70 MJ 20.94 AU 4.54 asec

HD 1405 1.54 13.13 MJ 66.34 AU 2.04 asec

HD 220140 A 1.54 11.73 MJ 36.85 AU 1.73 asec

HD 96064 A 1.49 12.63 MJ 46.64 AU 1.75 asec

HD 139813 1.43 14.33 MJ 59.71 AU 2.37 asec

GJ 380 0.92 15.76 MJ 25.31 AU 4.21 asec
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7.4. Monte Carlo Simulations: Constraining the Power Laws

The planet distribution we used in the single Monte Carlo simulation described above could

not be ruled out by our survey. To find out what distributions could be ruled out, we performed

Monte Carlo simulations assuming a large number of different possible distributions, parametrized

by the two power law slopes α and β, and by the outer semimajor axis truncation radius Rtrunc.

We tested three different values of α: -1.1, -1.31, and -1.51, roughly corresponding to the most

optimistic permitted, the best fit, and the most pessimistic permitted values from Cumming et al.

(2008). For each value of α, we ran simulations spanning a wide grid in terms of β and Rtrunc. In

constrast to the extensive results described in Section 7.3, the only data saved for these simulations

was the probability of finding zero planets. Since we did in fact obtain a null result, distributions

for which the probability of this was sufficiently low can be ruled out.

Figures 17 through 19 show the probability of a null result as a function of β and Rtrunc for

our three different values of α. Each pixel in these figures represents a Monte Carlo simulation

involving 15,000 realizations of our survey; generating the figures took several tens of hours on

a fast PC. Contours are overlaid at selected probability levels. Regions within the 1%, 5%, and

10% contours can, of course, be ruled out at the 99%, 95%, and 90% confidence levels respectively.

For example, we find that α = −1.1 and β = −0.44, truncated at 100 AU, is ruled out with 90%

confidence; while α = −1.51 and β = −0.3, truncated at 100 AU, is similarly ruled out.

7.5. Model-Independent Constraints

It is also possible to place constraints on the distribution of planets without assuming a power

law or any other particular model. To place such constraints, we performed a new series of Monte

Carlo simulations on a grid of planet mass and orbital semimajor axis. For each grid point we

seek to determine a number P (M,a) such that, with some specified level of confidence (e.g., 90%),

the probability of a star like those in our sample having a planet with the specified mass M and

semimajor axis a is no more than P (M,a). We determine P (M,a) by a search: first a guess is

made, and a Monte Carlo simulation assuming this probability is performed. If more than 10% of

the realizations of our survey turn up a null result, the guessed probability is too low; if less than

10% turn up a null result, the probability is too high. It is adjusted in steps of ever-decreasing size

until the correct value is reached.

Figure 20 shows the 90% confidence upper limit on P (M,a) as a function of mass M and

semimajor axis a. Each pixel represents thousands of realizations of our survey, with P (M,a)

finely adjusted to reach the correct value. Contours are overplotted showing where P (M,a) is less

than 8%, 10%, 25%, 50%, and 75%, with 90% confidence. Note that P (M,a) is a probability, rather

than a fixed fraction: Even if a planet with a specified mass and semimajor axis is guaranteed to

be detected if present around any star in our sample, and planets of this type exist around 6% of
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Table 15—Continued

% of Total Median Median Median

Star Name Detected Planets Mass Semimajor Axis Separation

GJ 896 A 0.61 12.43 MJ 6.47 AU 0.98 asec

GJ 860 A 0.38 11.58 MJ 53.26 AU 6.62 asec

τ Ceti 0.38 17.19 MJ 25.49 AU 5.52 asec

GJ 896 B 0.34 11.40 MJ 6.78 AU 1.14 asec

ξ Boo B 0.32 12.07 MJ 8.25 AU 1.36 asec

HD 220140 B 0.28 12.04 MJ 25.92 AU 1.37 asec

ξ Boo A 0.24 12.89 MJ 8.72 AU 1.50 asec

GJ 659 B 0.21 17.71 MJ 62.54 AU 2.81 asec

GJ 166 B 0.17 16.12 MJ 6.19 AU 1.34 asec

GJ 684 A 0.17 14.93 MJ 85.98 AU 4.87 asec

HD 96064 B 0.13 14.43 MJ 38.55 AU 1.60 asec

GJ 505 B 0.12 15.94 MJ 17.11 AU 1.61 asec

GJ 166 C 0.10 15.56 MJ 6.43 AU 1.52 asec

GJ 505 A 0.07 16.32 MJ 18.08 AU 1.75 asec

GJ 702 A 0.02 15.90 MJ 6.21 AU 1.50 asec

GJ 684 B None NA NA NA

GJ 860 B None NA NA NA

GJ 702 B None NA NA NA

HD 77407 A None NA NA NA

GJ 659 A None NA NA NA

GJ 3876 None NA NA NA

HD 77407 B None NA NA NA

Table 16. Importance of the M Band Data

Total simulated 2-band L′-only M -only

Star Name detections detections detections detections

ǫ Eri 2850 46.98% 8.28% 44.74%

61 Cyg B 1610 52.73% 1.55% 45.71%

61 Cyg A 965 63.01% 22.80% 14.20%

ξ Boo B 157 61.15% 18.47% 20.38%

ξ Boo A 115 60.00% 18.26% 21.74%

GJ 702 A 9 22.22% 0.00% 77.78%
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Fig. 17.— Probability of our survey detecting zero planets, as a function of the power law slope of

the semimajor axis distribution β, where dn
da ∝ aβ, and the outer truncation radius of the semimajor

axis distribution. Here, the slope of the mass distribution α has been taken as -1.1, where dn
dM ∝ Mα.

Since we found no planets, distributions that lead to a probability P of finding no planets are ruled

out at the 1 − P confidence level: for example, the region above and to right of the 0.1 contour is

ruled out at the 90% confidence level
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Fig. 18.— Probability of our survey detecting zero planets, as a function of the power law slope

of the semimajor axis distribution β, where dn
da ∝ aβ, and the outer truncation radius of the

semimajor axis distribution. Here, the slope of the mass distribution α has been taken as -1.31,

where dn
dM ∝ Mα. Since we found no planets, distributions that lead to a probability P of finding

no planets are ruled out at the 1 − P confidence level: for example, the region above and to right

of the 0.1 contour is ruled out at the 90% confidence level
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Fig. 19.— Probability of our survey detecting zero planets, as a function of the power law slope

of the semimajor axis distribution β, where dn
da ∝ aβ, and the outer truncation radius of the

semimajor axis distribution. Here, the slope of the mass distribution α has been taken as -1.51,

where dn
dM ∝ Mα. Since we found no planets, distributions that lead to a probability P of finding

no planets are ruled out at the 1 − P confidence level: for example, the region above and to right

of the 0.1 contour is ruled out at the 90% confidence level
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stars, making the expected number in a 54 star survey more than 3, there is still a possibility that

none of the stars in our survey will have such a planet.

Since without exception more massive planets are easier to detect, and in general planets in

more distant orbits are easier to detect (until the orbits get so large that we start to lose some

planets beyond our field of view), the results presented in Figure 20 can be interpreted as model-

independent constraints on planet populations. For example, with 90% confidence we find that no

more than 50% of stars with properties like those in our survey have a 5 MJ or more massive planet

in an orbit with a semimajor axis between 30 and 94 AU. No more than 25% of stars like those in

our survey have a 7 MJ or more massive planet between 25 and 100 AU, no more than 15% have

a 10 MJ or more massive planet between 22 and 100 AU, and no more than 12% have a 15 MJ or

more massive planet/brown dwarf between 15 and 100 AU.

We can apply a similar Monte Carlo method to that described above to set an upper limit on

the occurence rate for systems of massive planets like that of HR 8799 (Marois et al. 2008). Taking

the orbital radii of the planets to be 24, 38, and 68 AU, and their masses to be 10, 10, and 7 MJ,

respectively, we set a 90% confidence upper limit of 8.1% on the probability of a lower-mass star

like those in our survey having such a system. What the occurence rate of such systems is for more

massive stars such as HR 8799 itself is not yet clear, but future surveys of both sun-like and more

massive stars may confirm our current expectation that massive planets will be more abundant

around massive stars.

7.6. Our Survey in the Big Picture

The surveys of Kasper et al. (2007) and Biller et al. (2007), have set constraints on the dis-

tributions of extrasolar planets similar to those we present herein, while the work of Nielsen et al.

(2008) and especially Lafrenière et al. (2007) has set stronger constraints. The main importance

of our work is that we targeted a different set of stars, at different wavelengths, and confirmed the

conclusions of the other surveys.

The only unambiguous detections of self-luminous extrasolar planets so far are those of Marois

et al. (2008), who found three massive planets in distant orbits around HR 8799. Multi-band

photometry of these planets is only now being successfully obtained, and in any case they are con-

siderably hotter than most of the planets our survey might have been expected to find. Theoretical

spectra of self-luminous extrasolar planets are therefore very poorly constrained observationally.

Such models predict brightnesses in the H band, and particularly in narrow spectral windows

within the H band, that are enormously in excess of black body fluxes. The constraints set by the

surveys of Masciadri et al. (2005); Biller et al. (2007); Nielsen et al. (2008); and Lafrenière et al.

(2007) depend on the accuracy of these models. The L′ and M bands that we have used are nearer

the blackbody peaks of low-temperature self-luminous planets, and might be expected to be more

reliable.
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Fig. 20.— 90% confidence level upper limits on the probability of stars like those in our sample

having planets with a given mass and semimajor axis.
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However, Leggett et al. (2007) and Reid & Cruz (2002) suggest that the M band brightness at

least of hotter extrasolar planets will be less than predicted by Burrows et al. (2003) due to above-

equilibrium concentrations of CO from convective mixing. Hubeny & Burrows (2007) present new

models indicating the effect diminishes for cooler planets, but it would still have some effect on

our M band sensitivity. It might actually enhance the L′ brightness through line-blanketing. Our

conclusion is not, however, that theoretical spectra such as those of Burrows et al. (2003) are

more reliable in the L′ and M bands than at shorter wavelengths. Rather, so long as the models

remain poorly constrained by observations at every wavelength, conclusions based on observations

at multiple wavelengths will be more secure. Our survey, with that of Kasper et al. (2007), has

diversified planet imaging surveys across a broader range of wavelengths.

In another sense our survey differs even from that of Kasper et al. (2007): we have investigated

older stars. This is significant because planetary systems up to ages of several hundred Myr may still

be undergoing substantial dynamical evolution due to planet-planet interactions (Juric & Tremaine

2007; Gomes et al. 2005). Our survey did not necessarily probe the same planet population as,

for example, those of Masciadri et al. (2005) and Kasper et al. (2007). Finally, theoretical models

of older planets are likely more reliable than for younger ones, as these planets are further from

their unknown starting conditions and moving toward a well-understood, stable configuration such

as Jupiter’s. It has been suggested by Marley et al. (2007), in fact, that theoretical planet models

such as those of Burrows et al. (2003) and Baraffe et al. (2003) may overpredict the brightness of

young (< 100 Myr) planets by orders of magnitude, while for older planets the models are more

accurate.

We have focused on nearby, mature star systems, and have conservatively handled the ages

of stars. This makes our survey uniquely able to confirm that the rarity of giant planets at large

separations around solar-type stars, first noticed in surveys strongly weighted toward young stars,

persists at older system ages. It is not an artifact of model inaccuracy at young ages due to unknown

initial conditions.

8. The Future of the L′ and M Bands

In the L′ and M bands, the sky brightness is much worse than at shorter wavelengths (e.g., the

H band regime used by Biller et al. (2007) and Lafrenière et al. (2007)), but predicted planet/star

flux ratios are better. Thus it makes sense to use these bands on bright stars, where the planet/star

flux ratio is a more limiting factor than the sky brightness. In Heinze et al. (2008), we have shown

that M band observations tend to do better than those at shorter wavelengths at small separations

from bright stars.

The L′ and M bands are also most sensitive relative to shorter wavelengths for detecting the

lowest temperature planets, as these have the reddest H − L′ and H − M colors. Such very low

temperature planets can only be detected around the nearest stars, so it is for very nearby stars
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that L′ and M band observations make the most sense. According to the Burrows et al. (2003)

models, the most sensitive H-regime observations made to date (those of Lafrenière et al. (2007))

would have set better mass limits than our observations around all of our survey targets except

the very nearest objects, such as ǫ Eri and 61 Cyg. At present, the H-regime delivers far the best

planet detection prospects for most stars.

However, as larger telescopes are built and longer planet detection exposures are attempted,

the sensitivity at all wavelengths will increase. This means that low-temperature planets, with

their red IR colors, will be detectable at large distances, and the utility of the L′ and especially the

M bands will increase. In Figure 21 we show the minimum detectable planet mass for hypothetical

stars at 5 and 10 pc distance as a function of the increase over current sensitivity in the H, L′,

and M bands. We have taken current sensitivity to be H = 23.0 (i.e., Lafrenière et al. (2007)),

L′ = 16.5, and M = 13.5 (i.e., the present work, scaled to an 8m telescope such as Lafrenière et al.

(2007) used). These are background limits, not applicable close to bright stars. Based on Heinze et

al. (2008), we believe the L′ and M bands will do even better relative to H closer to the star where

observations are no longer background limited. We have deliberately chosen the characteristics of

the hypothetical stars to be less good than the best available planet search candidates, so that in

each case a number of stars closer and younger than each example actually exist.

Figure 21 illustrates two very important points. First, with a relatively minor increase of 1-1.5

mag in sensitivity, the M band will be sensitive to considerably lower-mass planets around stars

within 5 pc than can be detected with H band observations, even if the H band sensitivity increases

the same amount. Second, the advantage of the M band decreases with increasing distance, but as

larger telescopes and longer exposures increase sensitivities to 2.5 mag above present levels, the M

band will be superior to H out to 10 pc. In fact, with an increase of 3 mag, M band will surpass

H out to 25 pc. All this applies to background-limited observations: close to bright stars, the

relative utility of the M band should be even higher. Figure 21 also suggests that the M band is

considerably more promising than L′. Note that the predicted supression of flux in the M band due

to elevated levels of CO (Leggett et al. 2007; Reid & Cruz 2002) will not apply to planets at the

low temperatures relevant for Figure 21. Though they are at present far surpassed in sensitivity

by H-regime observations for all but the nearest stars, the L′ and especially the M bands hold

considerable promise for the future.

9. Conclusion

We have surveyed unusually nearby, mature star systems for extrasolar planets in the L′ and

M bands using the Clio camera with the MMT AO system. We have developed a sophisticated

image processing pipeline for data from this camera, including some interesting innovations. We

have carefully and rigorously analyzed our sensitivity. Speckle residuals surrounding bright stars

can introduce serious bias into some popular sensitivity estimators, but we have developed two

that are not subject to this bias. Blind tests involving fake planets inserted in raw data are the
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best way to confirm the validity of any sensitivity estimator, and should be included in all future

planet-search publications. By extensive use of such tests, we established a definitive significance

vs. completeness relation for planets in our data, which we then used in Monte Carlo simulations

to constrain planet distributions.

We discovered a physically orbiting ∼ 0.15M⊙ binary companion at a projected separation

of 80 AU from the star GJ 3876. However, we did not detect any planets. Our constraints on

the distribution of planets from this null result are similar to constraints placed by Kasper et al.

(2007) and Biller et al. (2007), but less tight than those of Nielsen et al. (2008) and especially

Lafrenière et al. (2007). However, we have surveyed a more nearby, older set of stars than any

previous survey, and have therefore placed constraints on a more mature population of planets.

Also, we have confirmed that a paucity of giant planets at large separations from sun-like stars is

robustly observed at a wide range of wavelengths.

The best current H regime observations, those of Lafrenière et al. (2007), would attain sensi-

tivity to lower mass planets than did our L′ and M band observations for all of our survey targets

except those lying within 4 pc of the Sun. However, as larger telescopes are built and longer

exposures are attempted, the sensitivity of M band observations may be expected to increase at

least as fast as that of H band observations (in part because M band detectors are currently a

less mature technology). A modest increase from current sensitivity levels, even if paralleled by

an equal increase in H band sensitivity, would render the M band the wavelength of choice for

extrasolar planet searches around a large number of nearby stars.
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Fig. 21.— Minimum detectable planet mass in units of MJ for stars at 5pc (left) and 10pc (right),

in the H, L′, and M bands, as a function of increase over current sensitivity. We have taken current

sensitivities to be H = 23.0, L′ = 16.5, and M = 13.5. Modest increases over current sensitivities

will render the M band very promising relative to shorter wavelengths, especially for nearby stars.


